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Abstract—With the increasing demand for intelligent services,
the sixth-generation (6G) wireless networks will shift from a
traditional architecture that focuses solely on a high transmission
rate to a new architecture that is based on the intelligent
connection of everything. Semantic communication (SemCom),
a revolutionary architecture that integrates user as well as ap-
plication requirements and the meaning of information into data
processing and transmission, is predicted to become a new core
paradigm in 6G. While SemCom is expected to progress beyond
the classical Shannon paradigm, several obstacles need to be over-
come on the way to a SemCom-enabled smart Internet. In this
paper, we first highlight the motivations and compelling reasons
for SemCom in 6G. Then, we provide an overview of SemCom-
related theory development. After that, we introduce three types
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of SemCom, i.e., semantic-oriented communication, goal-oriented
communication, and semantic-aware communication. Following
that, we organize the design of the communication system into
three dimensions, i.e., semantic information (SI) extraction, SI
transmission, and SI metrics. For each dimension, we review
existing techniques and discuss their benefits and limitations, as
well as the remaining challenges. Then, we introduce the potential
applications of SemCom in 6G and portray the vision of future
SemCom-empowered network architecture. Finally, we outline
future research opportunities. In a nutshell, this paper provides
a holistic review of the fundamentals of SemCom, its applications
in 6G networks, and the existing challenges and open issues with
insights for further in-depth investigations.

Index Terms—Semantic communication, sixth-generation In-
ternet, goal-oriented communication, effectiveness coding, artifi-
cial intelligence

I. INTRODUCTION

A. Motivation

As we revisit the development path from the first-generation
(1G) to 5G communications, it is evident that the conventional
focus has been to optimize data-oriented performance metrics,
such as communication data rate and bit error probability,
while ignoring service-, goal-, or semantic-related metrics. For
example, 3G focuses on mobile broadband development. It
promises a thousand times the data rate of 2G, whereas 4G
unlocks high-speed Internet streaming, delivering a thousand
times the data rate of 3G. The motivation for this convention
is traced back to the time when Shannon first demonstrated
that reliable communication is possible in noisy channels in
the classical information theory (CIT) literature [1]. Shannon
believed that “the semantic aspects of communication should
be regarded as irrelevant to the engineering problem”. The
reason is that the meaning of a message can be related to
“certain physical and conceptual entities” and that involving
the meaning in a mathematical model may affect the generality
of the theory [1].

With continuous technological progress following CIT, the
advent of the 5G has brought about a breakthrough in com-
munication network design [2], enabling a variety of services
from digital twins, edge computing, the Internet of Things
(IoT), and more, through the supporting technologies such
as ultra-reliable and low-latency communications (URLLC),
massive machine type communications (mMTC), and en-
hanced mobile broadband (eMBB) communications. How-
ever, content-centric data-driven communication architecture
is increasingly seen as a barrier to providing end-users with
services that demand high quality of experience (QoE). This
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is especially so given that the emerging applications of the 6G
will be human-centric, data-, and resource-intensive. One such
application is the Metaverse [3], which has been envisioned
to be the future Internet. Just as we navigate the web pages
of today’s Internet, we will soon explore the virtual worlds of
Metaverse through a head-mounted display (HMD) or navigate
the augmented physical world through Augmented Reality
(AR) glasses. The Metaverse is formed via the synchronization
of the virtual and physical worlds, and the result is that
one’s actions in the virtual and physical domains will be
inextricably linked. Driven by Artificial Intelligence (AI),
edge intelligence, virtual and augmented reality, as well as
blockchain technology [4]–[6], the user-centric QoE metrics
required for the successful implementation of Metaverse calls
for a rethink of the classical information theory (CIT) driven
communication networks, because the massive data from new
applications increases significantly the processing latency of
conventional communication networks [7]. Specifically, the
following difficulties in 6G networks should be addressed:

D1) The emergence of new services, e.g., Metaverse, requires
6G network to support the wireless transmission of mas-
sive volumes of data.

D2) 6G applications with a massive number of nodes, e.g.,
collaborative robots and hyper-intelligent IoT, require
fast system responses and reliable, efficient information
interaction.

D3) More network resources are consumed for real-time up-
dating of information and analysis of user data to ensure
a better service experience.

In response, a novel paradigm known as semantic commu-
nication (SemCom) is inspired as a brand new technology
in 6G to breakout the “Shannon’s trap”, which identifies and
utilizes the meaning of messages during Internet communica-
tion. In contrast to conventional data-oriented communication
networks, the capacity of which is improved at the cost
of system complexity, SemCom enables all communication
participants to lighten the network burden via transmitting
the most relevant information for the receivers or the goal of
communication task after the pre-processing of the data based
on the advanced AI technology [8]–[10]. The development of
SemCom and the advancement of 6G are mutually reinforcing,
so as to bring solutions to the three difficulties mentioned
above. On the one hand, the availability as well as connectivity
of distributed computation and ubiquitous AI networks in 6G
will allow SemCom to be feasibly deployed at scale [11]. On
the other hand, SemCom overcomes traditional communica-
tion constraints and will enable unprecedented improvements
in network performance. Thus, with the successful training
and development of SemCom, the visions of 6G, e.g., lower
latency than 5G and enhanced reliability, can be fully realized.
Specifically, the SemCom has the following abilities to address
D1), D3), and D3), respectively.

A1) Reduce the wireless data transmission burden of 6G
network.

A2) Enhance efficiency of 6G network control and manage-
ment.

A3) Use the semantics of information to design effective

network resource allocation schemes.

However, while the mutually reinforcing convergence prop-
erties in 6G and SemCom have attracted the attention of the
academic community, there is not yet a comprehensive survey
paper that provides a complete overview of the developments,
challenges, and future trends for the SemCom-enabled 6G and
Beyond networks. As SemCom is a relatively nascent topic,
our survey aims to serve as a useful and insightful guide for
future studies to researchers and practitioners alike that look
to incorporate SemCom concepts into future communication
architectures.

B. Comparisons and key contributions

Due to the recent attention in SemCom, some review papers
have emerged to address this topic. In [11], the authors state
the need to integrate the semantic and effectiveness levels in
traditional communications, and suggest an efficient cross-
layer design architecture. Moreover, according to the level
of communication achieved, they classify the communications
beyond Shannon into SemCom and goal-oriented communica-
tion. However, for the encoding and decoding in semantic and
goal-oriented communications, only highly abstract analytical
models are provided. Although they emphasize the importance
of machine learning in SemCom, the related technical details,
such as the neural networks (NNs) suitable for semantic
information (SI) extraction of different data types, are missing.
In [8], the authors introduce two SemCom architectures. One is
the layer-coupling approach, which is similar to the cross-layer
design architecture proposed in [11]. The other is the SplitNet
approach, which is used in most existing DL-based SemCom
studies. However, similar to [11], most of their work focuses
on conceiving the concepts and roadmaps, with relatively less
focus on technical details. Moreover, different from [11], they
classify SemCom into two types according to the receiver.
The encoding process in the two types is called semantic
encoding and effectiveness encoding. A few encoding meth-
ods for natural language and model/gradient compression are
reviewed, while the transmission and decoding processes are
not discussed in detail. In [12], the authors in [12] compare
the conventional and semantic communication systems and
theories, and present SemCom system components, frame-
works, and performance metrics. Then, they review recent ad-
vancements in DL-enabled SemCom systems for transmitting
multimodal data. In their work, they mainly focus on semantic-
oriented communication, and the studies about goal-oriented
communications are not covered. Moreover, the usage, as well
as the benefits and limitations of semantic metrics and the
techniques of DL-based SemCom, are not discussed in detail.

In addition, there are several short briefs [9], [10], [13]
providing insights from different perspectives with regards to
the design of SemCom systems, e.g., FL-enabled SemCom
networks [9], goal-oriented SemCom systems [10], and DL-
enabled E2E semantic networks [13]. However, these studies
review the works from a certain perspective only and do
not provide a comprehensive review of the challenges and
techniques.
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TABLE I: A comparison of contribution between relevant surveys and our survey.

Key contributions Main limitations

[11]

C
om
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en
si

ve
su

rv
ey

• Highlight 6G use cases, services and related KPIs
• Motivate the need of SemCom and suggest an efficient
cross-layer design architecture

• Motivate a paradigm shift towards semantic and goal-
oriented communications

• Highlight the importance of learning-based approach in
SemCom

• Fail to provide a roadmap for the system design in a
cross-layer architecture

• Only provide a highly abstract theoretical analytical
model for the encoding and decoding in the semantic and
goal-oriented communication system, without any practical
approaches for specific applications

[8]

• Define semantic and effectiveness encoding according to
the destination type

• Introduce two SemCom architectures: layer-coupling
approach and SplitNet approach

• Discuss the potential role of KG technique in SemCom

• Only a few encoding methods for natural language and
model/gradient compression are elaborated closely

• The communication part of SemCom, such as transmis-
sion and decoding processes, is rarely covered

[12]

• Compare the conventional and semantic communication
systems and theories

• Presents SemCom system components, frameworks, and
performance metrics

• Discuss recent advancements on DL-enabled SemCom
systems for transmitting multimodal data

• Goal-oriented communication studies are not included
• Only DL-based SemCom methods are reviewed, and there
is no technical discussion about the selection and design
of DL models

• Simply introduce error-based metrics, without discussing
their usage, as well as their advantages and disadvantages

Key contributions

[9]

Sh
or

t
br

ie
f

• Review classical SemCom frameworks
• Propose an architecture based on federated edge intelligence for supporting semantic-aware networking

[10] • Apply SemCom to a communication scenario where the destination is tasked with real-time source reconstruction
for the purpose of remote actuation

[13] • An overview of the latest deep DL-based end-to-end SemCom is given and the open issues that need to be tackled
are discussed explicitly

[14] • Conceive an intelligent semantic communication-empowered ubiquitous-X 6G framework
• Present three promising application scenarios for SemCom

O
ur
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pe

r
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eh
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si

ve
su

rv
ey

Overlapping Contributions Distinct Contributions
• Classify SemCom into three categories, and present their
system models and application scenarios

• Provide an overview of SemCom related theory develop-
ment

• Discuss the challenges from three design dimensions of
SemCom system

• Based on the ubiquitous-X 6G framework proposed
in [14], we envision the 6G Internet with examples

• Identify and outline a series of directions for future
research of SemCom

• Review four types of SE method in SemCom, and discuss
their pros and cons, as well as suitable scenarios

• Summary the existing technical DL-based SE models,
and discuss their benefits and limitations

• Discuss the communication-related techniques and chal-
lenges for SemCom

• Classify semantic metrics into three basic types, and
discuss their limitations and usages

• Discuss the potential links between the SemCom and
promising 6G applications

To this end, we aim to provide a comprehensive survey for
the implementation of SemCom in 6G, by thoroughly review-
ing the existing studies and discussing the 6G applications
in potential SemCom-empowered network architecture. In our
paper, we classify all communications that take into account
the semantic or effectiveness layer into SemCom. Meanwhile,
we divide SemCom into three categories: semantic-oriented
communication, goal-oriented communication, and semantic-
awareness communication. The first two categories belong to
traditional connection-oriented communication, which follows
the definitions of two class communication in [11]. The
third category of SemCom defined in our paper belongs
to task-oriented communication1. Meanwhile, to provide a

1Task-oriented communication here refers to an emerging type of commu-
nication in 6G wherein there are multiple explicit or implicit connections
between different terminals and network nodes in a proactive or reactive
manner [15]. It can be regarded as a counterpart to traditional connection-
oriented communication wherein it is easy to tell an explicit pair of source
and destination terminals according to the content they intend to communi-
cate [15].

clear roadmap for SemCom implementation, we organize the
design of the communication system into three dimensions,
i.e., SI extraction, SI transmission, and SI metrics. For each
dimension, based on the review of the state-of-the-art methods
for the traditional data type, such as text, image, and audio, we
summarize the lessons learned about their applicable SemCom
categories and scenarios as well as their benefits and limita-
tions. Additionally, we discuss the remaining challenges in
each dimension, respectively. Then, we highlight the potential
of SemCom in 6G applications and networks. A series of
future research directions are identified. Our discussion aims
to shed light on the road ahead for SemCom research.

A more detailed comparison of our paper and existing
surveys is listed in Table I. The thorough scope of our survey
is presented in Section I-C.

C. Scope of the survey

The scope of the survey is shown in Fig. 1. In Section II,
we first provide a holistic overview of the SemCom-related
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TABLE II: List of common abbreviations.

Abbr. Description Abbr. Description Abbr. Description
SI Semantic information SE Semantic extraction ML Machine Llearning
DL Deep learning RL Reinforcement learning KB knowledge base
KG Knowledge graph CR Compression ratio CE Cross entropy

MSE Mean square error GAN Generative adversarial net DNN Deep neural network
CNN Convolutional neural network CV Computer vision NLP Natural language processing

theory development from semantic information theory to goal-
oriented communication theory. Meanwhile, we identify the
three categories of SemCom and the corresponding system
design. Then, in Sections III-V, we discuss the state-of-the-art
techniques and remaining challenges in SI extraction, SI trans-
mission, and SI metrics, respectively. In Section III, we first
review four general semantic extraction (SE) methods in Sec-
tion III-A-SectionIII-D. Among them, DL-based SE and RL-
based SE mainly apply to semantic-oriented communications,
and KB-assisted SE and semantic-native SE can be employed
in goal-oriented communications. Meanwhile, in Section III-E,
we also take two typical examples to illustrate the role of
SE in semantic-aware communications. In Section IV, we
focus on the transmission process. We review the techniques
and challenges in terms of the wireless environment, limited
network resources, and heterogeneous network devices in
Section IV-A-Section IV-C1, respectively. In Section V, we
first discuss three basic types of semantic metrics: error-
based semantic metrics, age-of-information (AoI) based se-
mantic metrics, and value-of-information (VoI) based semantic
metrics in Section V-A-Section V-C, respectively. Then, in
Section V-D, we review existing combined semantic metrics
based on the three basic types. In Section VI-A, and Sec-
tion VI-B, we aim to highlight the potentials of SemCom in
6G. In Section VI-A, we introduce the potential applications
for SemCom in 6G, and discuss the possible roles of SemCom
in each application. Furthermore, in section VI-B, we discuss
the implementation of SemCom in 6G Internet with some
specific applications based on the ubiquitous-X 6G framework
suggested in [14]. At last, we identify and outline a series of
directions for future research of SemCom in addition to the
challenges ahead in Section VII. Section VIII concludes the
survey.

II. FUNDAMENTALS OF SEMCOM

A. SemCom-related theory

The concept of semantics is initially introduced in the
studies on semiotics [16]. In [17], the authors define semiotics
as a triple combination of syntactics, semantics, and prag-
matics. Syntactics focuses on the interrelation of the formal
features for signs (visual and linguistic) without considering
the meaning. Semantics specializes in the meaning of the signs
at different levels. Pragmatics concentrates on the relationship
between the utility of the signs with respect to the user in the
sign system [16], [18]. Comparable to the triple-definition for
the signs, Weaver [19] identifies three levels of communication
as below to further characterize the syntactic, semantic, and
pragmatic features of communications [20].

Level A How accurately can the symbols of communication
be transmitted? (The technical level.)

Level B How precisely do the transmitted symbols convey the
desired meaning? (The semantic level.)

Level C How effectively does the received meaning affect
conduct in the desired way? (The effectiveness level.)

Shannon’s CIT achieves a big success in deriving a rigorous
mathematical theory of communication based on probabilistic
models, wherein the concept of information is defined as
what can be used to remove uncertainty and the analysis is
based on mutual information in the entropy domain. However,
CIT focuses only on the technical level. Therefore, some
researchers follow Shannon’s work and make an attempt to
extend it to the semantic level and effectiveness level. The
development of classical SemCom has been highlighted in
Fig. 2.

1) Semantic information theory: The authors in [21], [22]
make the first effort in contributing to the Theory of semantic
information (TSI) in 1950s. They propose an ideal language
model which consists of n nouns and k adjectives. An arbitrary
noun A and an arbitrary adjective a can be conjugated via a
verb. For instance, Aa means “A is a” or “A has property a”.
Besides, there exists five connections in the proposed model: ∼
(Not), ∨ (Or), ∧ (And), → (If ... then), and ≡ (If and only if).
In this sense, many sentences can be generated based on the
above conjunctions. Following the definition of information
in CIT, the amount of SI for a word can be defined as a
function of the number of sentences that the word can imply
in the considered language model, i.e., the more sentences a
word can imply in the language model, the more SI the word
contains [16]. Moreover, to quantify the amount of information
of a sentence x, they further propose a concept named “state
descriptor Z”, which is defined as the conjunction of one noun
and one adjective (positive or negative) [16]. The range of
the valid sentences for sentence x is denoted by R(x). By
introducing a measurement function for a description denoted
by m(Z), where 0 ⩽ m (Z) ⩽ 1,

∑
m (Z) = 1 [16], the

measurement for a sentences m(x) equals the sum of all
m(Z) within R(x) and, similar to Shannon theory of syntactic
information, the amount of SI for a sentence can be calculated
as its entropy, i.e., I (i) = −log2m (x).

By this point, one significant limitation can be found that
it completely ignores the motivation and purpose of the
communication at hand. In fact, there is no radical difference
between TSI and CIT [16]. In this sense, a false sentence that
happens to say much may also be highly informative, as the
SI, in such a measurement for SI amount, is not meant to
imply truth [21].
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Section I: Introduction

Section VI: SemCom for future 6G Internet

Section VII: Future directions

Section VIII: Conclusion

System modeling and performance evaluation of SemCom

Distributed Learning based applications

Holographic telepresence

Intelligent transport system Unmanned aerial vehicles

Collaborative robotsPersonalized body area networks Hyper-intelligent IoT

I.A Motivation I.B Comparisons and key contributions I.C Scope of the survey

Section III. Semantic Extraction 

Technologies and Challenges

Section IV. Semantic Information 

Transmission and Challenges
Section V. Semantic Performance 

Measurement and Challenges

III.A DL-based semantic extraction

III.E Some specific SE

V.A Error-based semantic metrics

Semantic metrics for text data

Semantic metrics for visual data

Semantic metrics for audio data

V.B AoI-based semantic metrics

V.C VoI-based semantic metrics

V.D Combined semantic metrics

S
em

an
ti

c-
o
ri

en
te

d
 c

o
m

m
u
n

ic
at

io
n

G
o
al-o

rien
ted

 co
m

m
u
n
icatio

n

IV.A Wireless environment

· BLEU · CIDEr

· Sentence similarity

· SDR · PESQ

Varying channel models

Uncertain SNR

Bit error

IV.B Limited Network Resource

Bandwidth resource

Energy resource

IV.C Heterogeneous Network Devices

Device capacities

Connections among IoT devices

Coding and decoding scheme

SemCom mainly about text, visual, and audio data transmission

Section II: Fundamentals of SemCom

VI.B SemCom-empowered 6G architecture

II.B SemCom system design

Semantic-oriented communication  Goal-oriented communication  Semantic-aware communication  

II.A SemCom-related theory

 Goal-oriented communication theorySemantic information theory Strongly semantic information theory Semantic communication theory

Extended Reality

VI.A Potential applications for SemCom in 6G

Semantic intelligence plane Semantic application-intent layer Semantic network-protocol layer Semantic physical-bearing layer

SE for visual data

SE for text data

SE for audio data

SE for multimodel data

III.B RL-based semantic extraction

III.C KB assisted semantic extraction

III.D Semantic-native semantic extraction

III.F Lessons learned summary IV.D Lessons learned summary V.E Lessons learned summary

Fig. 1: Structure of the survey.

2) Strongly semantic information theory: To address the
above issue, the study of [23] develops a Theory of Strongly
Semantic Information (TSSI). Compared to the “weakly” TSI,
the truth values play a role in TSSI. Define f(s) as the degree
of discrepancy of statement s from the actual situation. The
author in [23] stipulates five conditions that any feasible and
satisfactory metric should satisfy as below.

C 1 For a true s that conforms most precisely and accurately
to the actual situation , f(s) = 0.

C 2 For an s that is made true by every situation, i.e., a

tautology, f(s) = 1.
C 3 For an s that is made true in no situation, i.e., a contra-

diction, f(s) = −1.
C 4 For a contingently false s, −1 < f(s) < 0.
C 5 For a contingently true s that is also made true by

situations other than the actual one, 0 < f(s) < 1.

The details about calculations for the degree of inaccuracy
and vacuity in C4 and C5 can be referred to [23]. Based on
the degree of discrepancy, the degrees of informativeness for
statement s is calculated as g (s) = 1−f(s)

2. Clearly, the more

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3223224

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 23,2022 at 04:34:16 UTC from IEEE Xplore.  Restrictions apply. 



6

Classical 

information 

theory

Semantic 

information 

theory

Strongly semantic 

information 

theory

Semantic 

communication 

theory

Goal-oriented 

communication 

theory

· Defined an ideal 

language model

· Introduce the concepts 

of “state descriptor” 

and “range”
· Define the  amount of 

information contained 

by a sentence

·  Truth values play a role in 

information quantifying

· Stipulate five conditions 

which any  metric should 

satisfy

· Extend the quantitative 

analysis to the quantity of 

misinformation

· Introduce a generic 

model of semantic 

communication

· Define the notions of 

semantic noise and 

semantic channel

· Derive the semantic 

capacity of a channel

· Propose a new  paradigm 

where communication is 

not an end in itself

· Introduce a third party in 

system model as referee 

· Address the problem of 

potential misunderstanding 

among different parties

Fig. 2: Development of classical SemCom.

a statement deviates from 0, the more informative it is, which
is more in line with the instincts of humans. However, it can
only perform the quantitative analysis for the complete class
of propositions in logical space and fails to provide rigorous
metrics. The authors in [24] further improved this work based
on the available works on truthlikeness, which measures the
degree of being similar to the truth [25], via extending the
quantitative analysis to the semantic concepts of the quantity of
misinformation, wherein SI is defined as true semantic content
and semantic misinformation is defined as false semantic
content. The related concept of information is rooted in the SI
framework using information flow [26]. By employing prior
works on truthlikeness for classical systems [27], [28], the
proposed SI quantifying method can support a broader range
of use cases. However, dealing with non-classical systems is
still an open issue. Nevertheless, the transformation of the
measurement from uncertainty into message content in [23],
[24] has made a milestone step in the development of semantic
information theory.

3) Semantic communication theory: The authors in [29] ini-
tially put forward a Theory of Semantic Communication based
on SI quantifying method [21], aiming to achieve semantic-
level communications. They propose a SemCom model for
a basic type source that can just make factual statements in
propositional logic. In their model, the source and destination
are modeled as a 4-tuple of < world model W , background
knowledge K, inference I , and message interpreter >. More-
over, the Shannon entropy H(W ) is employed to quantify
the information amount of the source, i.e., semantic entropy.
Furthermore, they consider a finite set of allowed messages X ,
which can be seen as the set of available semantic codes. In
this regard, semantic coding is the process of mapping from the
observed values of the world model to a specific message. The
strategy is a conditional probabilistic distribution P (X|W ),
and deterministic coding is encoding the observed value w into
x with the highest P (x|w). Furthermore, the relationship be-
tween the semantic entropy and message entropy is H (X) =
H (W ) +H (X|W ) −H(W |X), where H (X|W ) measures
semantic redundancy of coding, and H(W |X) measures se-
mantic ambiguity of the coding [29]. The major difference
from CIT is that the SI measure is based on the logical prob-
abilities which are determined by the background knowledge
and inference, instead of statistical probabilities. Secondly, the
side information, i.e., the destination’s prior knowledge about

the source, can also be considered in the coding process to
reduce the code length. More detail about encoding method
based semantic entropy can be found in [30]. Moreover, by
denoting the received message by y, the semantic channel can
be characterized by the distribution of p (y|x). Furthermore,
different from the CIT, the semantic channel capacity for the
discrete memoryless channel is dependent on three elements.
The first one is the mutual information I(X;Y ) between
X and Y , which is also the channel capacity for CIT. The
second one is the degree of semantic ambiguity introduced in
semantic encoding with Ks and Is, i.e., HKs,Is(W |X). The
last one is the average logical information of the received
messages, which is determined by Kd and Id, i.e., HKd,Id(Y ).
If Ks (Is) and Kd (Id) do not match, excessive semantic
noise is generated. For deriving the limit of semantic channel
capacity, the authors in [29] simplify the model by assuming
Ks = Kd and Is = Id, and the upper bound is given as
C = sup

P (X|W )

{
I(X;Y )−H(W |X) +H(Y )

}
.

These works can be seen as an initial but pioneering ex-
ploration of SemCom. However, it is only a model-theoretical
framework, which could be unrealistic for practical commu-
nication scenarios. More relevantly, in the above work, the
information amount is merely quantified based on classical
Shannon entropy, which has no concerns with the essence
of SI, the meaning factor, and thus is inconsistent with the
original vision of SemCom.

4) Goal-oriented communication theory: In contrast to the
study of [21], which focuses on the extension of Shannon’s
CIT, the study of [31] focuses on the development of the
classical communication system model. In both Shannon’s
classical system model and the SemCom model [29], all the
communication parties need to have a common language or
background. Faced with the increasing interaction among the
diversified computers at that time, the study of [31] tried to
make an attempt to make progress on the universal SemCom,
wherein the communication parties are expected to obtain
a common understanding via learning each other’s behavior
without any prior common language. In [31], the authors
focus on a particular communication model between Alice and
Bob, where Bob is a probabilistic polynomial time bounded
interactive machine with the goal of solving a hard computa-
tional problem, and Alice has unbounded computational power
and is willing to help Bob. Meanwhile, they speak different
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Fig. 3: General communication system models. (a) system
model for classical communications; (b) system model for
semantic-oriented communications; (c) system model for goal-
oriented communications; (d) scenario model for semantic-
aware communications.

languages and expect to discuss via some binary channel.
To solve this problem, the authors introduce a “trusted third
party”, which knows both languages of Alice and Bob and
can give finite encoding rules to translate for this discussion.
The results of the theoretical analysis show that Alice can help
Bob if and only if the problem that Bob wants to solve is in
PSPACE [32], (i.e., the solutions to the problem are verifiable
for Bob). Although the above assertions are in a restricted
setting, it first highlights that communication is not an end in
itself, but rather a means to achieve some general goals among
the communicating parties.

Based on the formulated communication model in [31],
the authors make an extension to study the general goals
of communication and first propose the conception of “goal-
oriented communication” in [33]. In this work, they clarify two
definitions related to the goals in communication. One is meta-
goal, which captures the intents of communicating agents, and
the other is syntactic goal, which captures effects that can be

observed by an agent. The results show that the meta-goals
with different syntactic versions are also achievable, i.e., two
communicators do not (necessarily) share a common language
under some technical conditions. Based on this, a novel
architecture could be enabled for the communication among
multiple agents with different protocols, wherein the trusted
party called “interpreter” played an essential role. It should
be noted that in the above communication model, while the
communication parties did not share a common language, they
are assumed to be “sufficiently helpful”. In [34], the authors
further generalize the above work. At this level of generality,
misunderstandings might occur between the communication
parties. In this work, the third party is renamed as referee,
which hypothetically monitors the conversation between com-
munication parties and assesses whether or not the goal has
been achieved. Moreover, they identify and highlight a new
concept called sensing, which captures the communication
parties’ ability to simulate the referee’s assessment. Based
on the concept, they propose a design principle for commu-
nication systems, which could achieve polynomial overhead
in the description length of the desired strategy. In [35], the
authors claim that the construction of universal users from
such sensing functions is equivalent to the design of an on-line
learning algorithm. However, the above works mostly rely on
the “try and check” paradigm. They can only provide guidance
on the design of the protocol or strategy for the simplistic
communication system, such as the conversation between a
server and a printer. Although the series of works only focus
on a mathematical theory of goal-oriented communication for
traditional computer communication models, the system model
proposed in their work has laid the foundation for modern
goal-oriented communication.

Even though the studies about SemCom theory are still
facing simple logic language models or the server-printer
communication scenario, the exploration of SemCom systems
is not constrained by this. Thanks to the advanced AI technolo-
gies, there has been a surge in the research on improving the
design of SemCom systems to meet more practical scenarios.
In this section, we first focus on three typical generic SemCom
system models and the concerns in the performance evaluation
that are different compared to traditional communications.
Then, in the following three sections, we organize the design
of the communication system into three dimensions, i.e., SI
extraction, SI transmission, and SI metrics. The available
technologies and the remaining challenges are reviewed and
discussed in Section III, Section IV, and Section V, respec-
tively.

B. SemCom system design

As mentioned at the beginning of Section II-A, the tradi-
tional communication systems only focus on the first level
(i.e., technical level) in the three levels of communications
identified by Weaver and Shannon. SemCom is proposed to
integrate the remaining two higher levels into the design of
communication systems. In our survey, we classify the existing
works for SemCom into three categories according to the
level and the role of the SemCom, i.e., semantic-oriented
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communication, goal-oriented communication, and semantic-
aware communication. The comparison of the communication
models can be shown in Fig. 3. Next, we describe the details
of the general system models for SemCom.

1) Semantic-oriented communications: Different from the
content-blind classical communication systems, what matters
in semantic-oriented communication design is the accuracy
of the semantic content of source data, instead of the average
information associated with the possibilities of source data that
can be emitted by a source [11]. As such, as shown in Fig. 3(a)
and Fig. 3(b), the main changes in the semantic-oriented
communication system lie in the data processing phase before
sending and after receiving. The traditional source encoding
is designed to find a method to convert source data into
shortcodes. Meanwhile, since the transmitted message is blind
to the underlying meaning, a good source encoding method
means that it can cope with more possibilities of source data,
which is in line with the information quantification in CIT.
However, in SemCom, the definition of “information” needs
to be modified.

As stated in [36], information is the commodity capable
of yielding knowledge, and the information that a signal
carries is what we can learn from it. In this sense, a module
of semantic representation is introduced before encoding in
SemCom, which is responsible for capturing core information
embedded in source data and filtering out the unnecessary
redundancy information. In many studies, the function of
semantic representation and semantic encoding are integrated
into one module called semantic encoding, which jointly plays
a similar role to source the shortcodes in traditional communi-
cations. Similarly, the combined role of semantic inference and
semantic decoding is equivalent to that of source decoding. In
general SemCom scenarios, decoding is the inverse process
of encoding, which is based on the AI technologies, such as
Transformer and auto-encoder which are powerful with prior
knowledge. Since the objective of SemCom is to enable the
receiver to successfully infer SI, we regard the joint semantic
encoding and decoding process as SE. Take an example of
image transmission for the transportation system in Fig. 4.
In traditional communications with the goal of image replica,
the compressed image based on a content-blind approach is
expected to preserve all the details of the original image. In
contrast, in semantic-oriented communication, the SE process
can filter out irrelevant image details for different tasks before
transmission by performing the appropriate image processing
techniques, thereby relieving the network burden without
compromising the system’s performance.

Moreover, as with human conversation, effective conversa-
tion requires common knowledge of each other’s language and
culture. In SemCom, the local knowledge of the communica-
tion parties needs to be shared in real-time to ensure that the
processes of understanding and inference can be well matched
for all the source data. If the local knowledge fails to match,
semantic noise generates, which leads to semantic ambiguity,
even in the absence of syntactic errors during the transmission
in physical transmission.

2) Goal-oriented communication: Recall the triple defini-
tion for signs, i.e., syntactics, semantics, and pragmatics. In the

ch
an

n
el

Raw source data
Recovered data

Semantic

communications

Fig. 4: Example of semantic-oriented communication.

above semantic-oriented communications, SE mainly focuses
on SI, whereas in goal-oriented communication, it is necessary
to capture pragmatic information. In [16], the authors illustrate
the mutual relationship among the three information types. As
shown in Fig. 5, the pragmatic information can be treated
as part of all the SI that can be conveyed by syntactic
information that can be treated as raw data generated by the
sources in communications. It is only relevant to a certain
goal of communication. Therefore, we also refer to pragmatic
information as SI for the sake of a concise presentation.

Therefore, as shown in Fig. 3(c), the main difference
between SE in goal-oriented communication and semantic-
oriented communication lies in that the goal of the commu-
nication task needs to play an important role in SE as well.
Meanwhile, the communication goals also have to be involved
in the local knowledge of the communication parties, which
helps further filter out the irrelevant SI in each transmission,
when the communication goal changes frequently. Take the
image transmission as an example. The features (i.e., SI) of
the images required for different tasks, such as classification
based on different attributes, detection of different targets,
or simply replication, are different. Thus, in a transmission
system with multiple tasks, perhaps only a local feature of
an image needs to be transmitted each time for a certain
task in goal-oriented communication. In contrast, in semantic-
oriented communication, due to the non-goal-specific SE, the
extracted SI should include the features for all the possible
tasks, which inevitably results in information redundancy and
waste of resources during transmission.

By comparing Fig. 3(b) and Fig. 3(c), another difference
is the output of the SemCom system. For semantic-oriented
communication, the output of the system is the recovered
meaning of the transmitted message. Then, the receiver takes
the next step according to the meaning of the received
message, but this process is not considered in the design
of the communication system. In contrast, the output of the
goal-oriented communication system is a direct action to
be performed. Recall the semantic-oriented communication
example of image transmission in the transportation scenario
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Fig. 5: Relationship among syntactic information, semantic
information,and pragmatic information [16].

as shown in Fig. 4, the results inferred by the receiver may be a
combination of feature maps similar to the ones on the right of
Fig. 4. In contrast, in goal-oriented communication, the output
of the inference module is the action execution instruction,
such as acceleration, braking, the angle for the steering wheel,
and flashing headlights, to respond to pedestrians, roadblocks,
and traffic signal status changes. In summary, goal-oriented
communication focuses on the effective level and aims to
accomplish the task in the desired way given limited network
resources, rather than the SI accuracy focused on the semantic
level in semantic-oriented communication.

Moreover, similar to semantic-oriented communication, the
local knowledge and communication goal of all the com-
munication parties need to be maintained to be consistent,
otherwise, the resulting semantic noise may cause the task
to fail.

3) Semantic-aware communication: As shown in Fig. 3(b)
and Fig. 3(c), both semantic-oriented and goal-oriented com-
munications establish a connection between two specific
agents. They belong to the traditional connection-oriented
communication, wherein it is easy to tell an explicit pair of
source and destination agents according to the content that
they intend to communicate [15]. In contrast, semantic-aware
communication in this survey refers to the SemCom that plays
a role in task-oriented communications, such as automatic
driving and unmanned aerial vehicle swarm.

In task-oriented communication, multiple agents cooperate
to accomplish a task in a centralized or distributed way as
shown in Fig. 3(d). The semantic-aware communication in
the task establishes multiple explicit or implicit connections
among different terminals in a proactive or reactive manner
to enhance the knowledge among agents. In other words,
semantic-aware communications can be treated as a kind of
“overhead” for the task for better collaboration to facilitate the
completion of tasks. In semantic-aware communication, the SI
here is obtained by analyzing the agent behavior and the cur-
rent environment in performing the task, instead of extracting
it from a data source. For instance, in autonomous driving, the
SI can represent the risk of a collision between two vehicles,
which is determined jointly by the vehicle location and kine-
matic information, traffic density, road conditions, traffic light
deployment, etc. Moreover, the SI can also be a description
of the views captured by a series of successive cars when
they pass the exit of a walled subdivision. After aggregating
the SI, a semantic representation of a continuous view over

the subdivision exit can be obtained, which can facilitate exit
monitoring and activity tracking along the exit lane within the
subdivision [37]. In semantic-aware communication, there may
be no explicit transceivers or a complete pairwise semantic
encoding and decoding processes. Therefore, there is not yet
a general system model for semantic-aware communication.

III. SEMANTIC EXTRACTION TECHNOLOGIES AND
CHALLENGES

As discussed in Section I, the achieved transmission rates
in conventional communication systems are approaching the
Shannon limit and the remaining available spectrum resources
are becoming increasingly scarce [38] [39]. The key to
SemCom being pushed forward to address the bandwidth
bottlenecks lies in that it converts the transmission-before-
understanding communication paradigm to the understanding-
before-transmission communication paradigm. In this way, SE
can be integrated into the communication model to achieve
SemCom [8], [20], which allows only the information of
interest to the receiver for transmission, rather than raw data,
thereby alleviating bandwidth pressure and enhancing privacy
preservation by reducing and hiding the redundant data to be
exchanged.

In fact, SE is not a brand-new topic, but it has been evolv-
ing [40], [41]. Some comparable works have been explored
in other research fields, such as semantic segmentation in
computer vision, which is used to cluster parts of images
together which belong to the same object class [42], semantic
computing, which addresses the derivation and matching of the
semantics of computational content and that of user intentions
to retrieve, use, manipulate, or even create the content [43],
and semantic web, which can be considered as a knowledge
graph formed by combining the linked data with intelligent
content and is widely used in recommendation systems to
facilitate intelligent and integrated user experience [44], [45].
Compared to [42]–[45], SemCom is another key field for SE.
In this field, all the communication parties have to be highly
aligned in semantic representation and interpretation, which
imposes challenges for SE. In addition, information in the 6G
communication system features a strong time-sensitive nature
and is highly demanding in terms of accuracy [46], which is
also a stringent requirement not found in other fields.

Hence, in the following, we merely concentrate on SE
methods in SemCom. In Section III-A and Section III-B,
we introduce two general SE methods for semantic-oriented
communications. Then, in Section III-C and Section III-D,
two general SE methods for goal-oriented communications are
presented, where the communication goals are integrated into
the SE. At last, we take two examples to illustrate the SE in
semantic-aware communication in Section III-E.

A. DL-based SE
Following the success of DL in the individual block op-

timization in the physical layer [47]–[51], DL-based end-to-
end communication systems have emerged as another potential
direction to outperform the conventional communication struc-
ture in block error rate (BLER) and BER performance [52]–
[54]. Inspired by this, some researchers further introduce the
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TABLE III: Performance Comparison for JTRS [65](CR =
0.04).

JTRS JPEG CS-DR CS-R
runtime 7e-5 s 7e-2 s 1e-3 s 4e-1 s
accuracy 0.9 0.5 0.1 0.14

an
al

og

SNRmin -4 dB 5 dB 15 dB 15 dB
runtime 1e-2 s 9e-3 s 1e-3 s 4e-1 s
accuracy 0.9 0.7 0.47 0.14

di
gi

ta
l

(Eb/N0)min 0 dB 5 dB 5 dB 4 dB

DL-enabled method in fields of computer vision (CV) [55]–
[57], (natural language processing) NLP [58]–[60] and speech
processing [61]–[63] into end-to-end communication system
as SE approaches, which pioneered the modern SemCom
study [64].

1) SE for visual data : Due to the large volume of image
data, the authors in [65] first focus on an image transmission
scenario, where an IoT device transmits images to the server to
perform recognition. The IoT device maintains a direct, point-
to-point wireless link to the server. Different from the con-
ventional communication models where multiple modules are
cascaded, they propose a DL-constructed joint transmission-
recognition scheme (JTRS) with the design metric of recog-
nition accuracy. In the designed scheme, the ResNet archi-
tecture [66] is employed due to its favorable performance
and few parameters. In order to complete feature extraction
before transmission, the deep neural network (DNN) of ResNet
is split into two parts. The first few layers function as a
feature extractor (i.e., semantic extractor) at the transmitter,
and the rest of the layers serve as a recognizer at the receiver.
Furthermore, to achieve the adaptive semantic extraction in
noisy channels, the joint semantic-channel coding (JSCC) is
implemented by using the DNN as channel encoders and
decoders, which is discussed in detail in Section IV.

To demonstrate the effectiveness of the DNN-constructed
JTRS, the authors in [65] compare the scheme with three
other cascaded compression-and-recognition schemes given
the similar compression ratio (CR) of 0.04. The three baseline
schemes are JPEG-compressed scheme (JPEG), compressed
sensing with direct recognition (CS-DR), and compressed
sensing with reconstruction (CS-R). Table III shows the com-
plexity (in terms of runtime), the highest recognition accuracy,
and the corresponding channel condition thresholds of the four
schemes for digital and analog transmissions, respectively2.
From Table III, we can see that, due to the excessively low
CR, the schemes of CS-DR and CS-R have almost lost the
capability to do recognition even under favorable channel
conditions. Among the three baselines, only the scheme of
JPEG can achieve the accuracy of more than 50% in digital
transmission with LDPC codes. In contrast, the proposed
JTRS can achieve the accuracy of up to 0.9 under poor
channel conditions in both analog and digital transmission.
Surprisingly, JTRS performs better in analog transmission than

2Here the analog transmission means that the data values are directly used
to modulate the signal without going through the steps of quantization. The
digital transmission means the data values need to be quantized and converted
to bits before modulation and transmission.

in digital transmission. More encouragingly, due to the lack
of quantification and bit conversion process before modulation
and transmission, the runtime of JTRS in the analog transmis-
sion is far lower than those in other methods, which means
that the DL-based SemCom has an inherent advantage in low–
latency communications.

However, this scheme is only designed to operate under
a specific SNR level. When channel conditions change, the
SE model needs to be retrained or refined, which introduces
considerable additional overhead. In the traditional commu-
nication system, the general source encoders and channel
encoders can achieve an adaptive CR and the channel coding
rate according to the SNR to achieve optimal performance
given the limited bandwidth. To fill this gap between SemCom
and traditional communication, the authors in [67] consider a
point-to-point image transmission system with SNR feedback.
They integrated the attention mechanism [55], [57] that is
widely used in CV into SE. The attention mechanism adopts
an additional neural network to rigidly select certain features
or assign different weights to different features in the original
neural network. In their proposed design, the joint semantic-
channel encoding is performed by a single network, which
consists of two modules: a feature extraction (FE) module and
an attention feature (AF) module. The FE module is used to
learn features from the input images. The AF module then
takes the output of the FE module and SNR as its input and
produces a sequence of scaling parameters. The product of
the outputs of the feature learning module and the attention
feature module can be seen as a filtered version of the feature
learning module output. The decoder is similarly designed. In
the simulation, the authors compare the performance of the
attention-based DL JSCC scheme trained under the uniform
distribution of SNR from 0 dB and 20 dB and five basic DL
based JSCC schemes trained at the SNR of 1 dB, 4 dB, 7 dB,
13 dB, and 19 dB, respectively. From the results, the peak
signal-to-noise ratio (PSNR) curve achieved by the proposed
scheme can be seen as the upper envelope of the other PSNR
curves of the baseline scheme trained at different SNRs, which
demonstrate the higher robustness, versatility, and adaptability
to the wide range of SNR of the attention-based approach.

The above two works focus on image recognition and
image recovery, respectively. The authors in [68] focus on
the applications of image classification against semantic noise.
Exploiting the heavy spatial redundancy of image data, they
propose a resource-efficient SE model with an asymmetric
encoder-decoder architecture. The encoder employs a masked
autoencoder (MAE) with vision Transformer (ViT) architec-
ture [69]. The MAE can reconstruct an image from partial
observations. Specifically, in the proposed architecture, a por-
tion of the original image is masked and disregarded first.
Then, the unmasked portion is embedded with the information
about their position in the original image, which then goes
to Transformer blocks to extract the image features [69]. As
the encoder only needs to process the portion of unmasked
patches, which significantly reduces the memory consumption.
On the contrary, the input of the decoder is the full set of
tokens consisting of encoded features of unmasked patches
and the masked tokens, which is a shared and learned vector
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TABLE IV: Comparison of the number of symbols for an
encoded image [68].

JPEG+LDPC MAE Ratio
total symbols 20432 196 0.95%

suggesting the presence of the patches that are to be pre-
dicted [68]. Moreover, different from the above end-to-end
SE model, the decoder can be designed independently of the
encoder, as the decoder is only used to perform the image
reconstruction task, which allows for greater flexibility in the
system design.

Meanwhile, MAE can also defend against malicious attack-
ers, i.e., by adding semantic noise to images. Since MAE
randomly masks partial patches of the image during the
encoding process, the impact of semantic noise added in the
patches of the image can be eliminated to some extent [68].
In addition, to further strengthen the resistance to malicious
attacks, the authors in [68] propose a codebook for encoded
feature representation, which consists of multiple discrete basis
vectors trained together with the encoder and decoder pa-
rameters. Based on the well-trained codebook, the continuous
encoded features output by the encoding neural networks
are mapped into the discrete indices of basis vectors by a
nearest neighbour search [68]. Hence, the distortion caused
by semantic noise can be corrected with a high probability
during discrete representation at the transmitter, which greatly
enhances the robustness of the communication. In the training
process, adversarial learning is employed where the semantic
noise is generated by fast gradient sign method.

Since MAE effectively reduces the spatial redundancy of
images, the number of symbols of an image to be transmitted
is 0.95% of that of an image encoded by the traditional scheme
(JPEG+LDPC), as shown in Table IV. Due to the effective SE,
the MAE scheme can achieve a classification accuracy of 0.6
even with an SNR of -6 dB. In contrast, the classification
accuracy of the traditional scheme (JPEG + LDPC) is close
to zero with SNR ranging from -6 dB to 6 dB due to the
limited bandwidth. Only when the SNR reaches 14 dB does
the traditional scheme achieve a classification accuracy of
0.6. However, the size of the JEPG images used for train-
ing and testing is relatively small (5108 bytes). Considering
the complexity of the training process, the feasibility and
the effectiveness of this scheme have to be further verified.
Nevertheless, this result fully demonstrates the importance
of SemCom in improving communication performance by
reducing the data transmission burden with effective SE.

2) SE for text data: Inspired by the success of DL in
NLP such as machine translation, the authors in [70] pioneer
the implementation of SemCom for text transmission. They
consider a simple system model, where a transmitter sends
sentences to a receiver using the limited number of bits over
an erasure channel. In the proposed scheme, the words are first
represented by an embedding vector using GloVe [71], which
is the pre-trained lookup table available for extracting SI.
Then, motivated by the success of the sequence-to-sequence
learning framework in machine translation [58], [72], the long
short-term memory (LSTM)-based encoder and decoder are

employed, wherein the embedding vector of the previously
estimated word is taken as the input for the next step and
the beam search algorithm is used to find the most likely
sequences of words [72], [73]. In this sense, the SI can be
embedded into the sentence recovery. Compared with Gzip
and Huffman, LSTM-based SE achieves the lowest word error
rate for a given coding length with a high bit-drop rate.
Meanwhile, under a certain bit-drop rate, due to the effective-
ness of extracted information, the superiority of LSTM-based
SE becomes more remarkable as the length of the sentence
increases. However, the word representation models like Glove
or Word2Vec [74] only capture the relationship among words
and fail to describe syntax information [38]. Therefore, the
proposed method can only describe the probability of a certain
word coming after another in a sentence, which makes it hard
to deal with complex sentences.

In the face of the above challenge, a newly proposed
architecture called Transformer has attracted a great deal of
attention, as it can extract both the SI and syntax from the
whole sentences effectively [38]. The Transformer network
is combined with multi-head attention mechanisms, which
allows it to extract multiple characteristics of input sentences
in parallel [39]. Therefore, compared with the recurrent neural
network (RNN)-based architectures, such as LSTM, the Trans-
former network achieves lower computational complexity and
more parallelizable computations while learning long-range
dependencies in input sentences [39] [60]. Hence, in the recent
works [38], [75], the Transformer networks replace the RNN
networks, and the channel models are extended to additive
white Gaussian noise (AWGN) channels and fading channels.
In their work, more expert semantic metrics, such as BLEU
and sentence similarity, (which are introduced in Section V)
are employed to measure the SemCom performance. The su-
periority of the scheme in terms of semantic metrics under the
low SNR region demonstrates the effectiveness of Transformer
in SE for text data.

However, the standard Transformer has a fixed attention
structure, which makes it treat all inputs indifferently and
limits its adaptability in the learning process. In fact, in a
sentence processing system, some words or phrases are more
likely to cause semantic ambiguity due to polysemy or noise
interference. With this in mind, the authors in [76] pro-
pose a flexible SE approach based on Universal Transformer
(UT) [77], by introducing an adaptive circulation mechanism
in the Transformer to break the original fixed structure. Com-
pared to the standard Transformer, UT is integrated with the
Adaptive Computation Time (ACT) model [78]. The ACT
model dynamically adjusts the number of computational steps
required to process each input symbol in the standard RNN,
according to a halting probability predicted at each step. Such
a dynamic halting mechanism allows UT-based SE to give loop
play to its own circulation mechanism for each input symbol
(i.e., per-symbol self-attentive RNN) and flexibly respond to
different SI and varying physical channels through different
cycles.

In [76], the authors compare the performance in terms
of BLEU of both the SemCom schemes with UT-based SE
approach and classical Transformer-based SE approach, with
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the traditional source coding and channel coding cascaded
schemes with fixed-length coding (5-bit) for source coding and
Turbo coding or Reed-Solomon coding for channel coding.
For both traditional schemes, the BLEU score keeps staying
pretty low over a wide range of SNR, and is only significantly
improved when the SNR is increased above 15 dB. In contrast,
both SemCom schemes achieve remarkably higher BLEU
scores under a variety of changing channel conditions. Specif-
ically, since the adaptive circulation mechanism facilitates a
more accurate capture of SI, the UT-based algorithm consis-
tently scores higher than the Transformer-based algorithm over
the full SNR region.

3) SE for audio data: With the success of E2E SemCom
focusing on images and text, the authors in [79] further inves-
tigate the SemCom for the audio signal. In [79], the authors
design an audio SE based on a DL-based NLP model named
Wav2Vec [80]. The semantic encoder consists of two cascaded
convolutional neural networks (CNNs), called FE and feature
aggregator (FA), respectively. The FE is responsible for ex-
tracting the rough audio features from the raw audio vector,
and the FA is responsible for combining the rough audio fea-
tures into a higher-level latent variable that contains semantic
relations among contextual audio features [80]. Accordingly,
the semantic decoder is also based on Wav2Vec architecture,
which consists of two symmetrical CNNs to the encoder called
feature decomposer (FD) audio generator (AG), respectively.
This scheme can reduce the MSE to below 2e-4, when the SNR
is above 0 dB. However, due to the simplicity of SE model,
the extracted SI is somewhat limited. As the SNR increases,
there is no obvious downward trend in MSE. Moreover, similar
to the LSTM model employed in image SE, the SE model is
trained under AWGN channels with a fixed channel coefficient,
which makes it challenging to guarantee decent performance
under more complicated channel conditions.

At the same time, similar to the evolution of text se-
mantic encoder, the authors in [81], [82] further integrate
the attention mechanism named SE-ResNet into SE, and
the encoder and decoder are constructed by one or multiple
sequentially connected SE-ResNet modules. The term “SE”
in “SE-ResNet” represents a squeeze-and-excitation network,
which is treated as an independent unit and employed to assign
high values to the weights corresponding to the essential in-
formation during the training phase. In particular, the squeeze
operation is to aggregates the 2D spatial dimension of each
input feature, and the excitation operation is to learn and output
the attention factor of each feature by capturing the inter-
dependencies. Meanwhile, the residual network is adopted
to alleviate the gradient vanishing issue due to the network
depth. With the simulation, it can be shown that the proposed
SE approach shows better performance under various fading
channels and SNRs compared to the CNN-based methods.
However, similar to the CNN-based SE model, the SE-ResNet-
based one still fails to implement a dynamic SE that adapts to
the channel condition varies.

Later, the authors in [83] further focus on speech recognition
tasks for the English language. In [83], the original speech
sample sequence is converted into a spectrum before feeding
into the transmitter. Moreover, they introduce a transcrip-

Q:  What family do these animals belong to ?

A:  Canidae           Felidae  

Q: How many dogs are there?

A:  One           Two  

Fig. 6: An example of a simple VQA task.

tion of a single speech sample sequence, where each token
represents a character in the alphabet or a word boundary.
Based on the spectrum and transcription, they design the
encoder and decoder. The semantic encoder is constructed
by the CNN and the gated recurrent unit-based bidirectional
RNN (BiRNN) [84] modules. The CNN is utilized for data
compression and the BiRNN is utilized to extract the text-
related semantic features before transmission. The channel en-
coding and decoding are performed by the dense layer, and the
semantic decoding is responsible for decoding the recovered
text-related semantic features into the text transcriptions. The
text-related semantic features are referred to as a probability
matrix with the probability that each token corresponds to
each letter. Considering the limited number of letters in the
English alphabet, the semantic decoder is designed as a greedy
decoder, wherein the maximum probability in all the steps is
indexed and the corresponding token is employed to construct
the final transcription. With the simulation, the SemCom-based
speech recognition achieves a much lower character-error-rate
and word-error-rate under a low SNR region, compared to the
traditional communication systems. In traditional communica-
tion systems, the speech signals are transmitted directly and
then transcribed into text at the receiver with automatic speech
recognition (ASR) module [85] or the speech signals are first
transcribed into text at the transmitter by ASR module and
then transmitted. However, as SNR increases, the superiority
of the algorithm becomes diminishing due to an unavoidable
error floor generated by DL [86].

4) SE for multimodel data: In addition to the three rep-
resentative data above, the authors in [87] take the visual
question answering (VQA) task as an example and investigate
a SemCom system for multimodal data transmission. In a
VQA task, some users transmit images while the others
transmit texts to inquire about the information of the images.
The answer is obtained at the receiver. In [87], they consider
a simple communication scenario with an image transmitter, a
text transmitter, and a receiver. Similar to the above works for
image and text, the proposed image transmitter employs the
ResNet-101 network [66] pre-trained on ImageNet [89] and
the proposed text transmitter employs the Bi-LSTM network.
Nevertheless, the design of the decoder is not well studied.
Since the SI from both users is correlated, the decoder needs
to merge the text and image SI as well as answer the vision
questions. To address the issue, the authors adopt the memory,
attention, and composition (MAC) neural network [90] to deal
with the correlated data. Specifically, each MAC cell consists
of three units. The control unit first generates a query based
on the received text SI by an attention module, then the read
unit receives the query and searches the corresponding key
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TABLE V: Summary of DL-based SE for typical data types.

NN Architecture Benefits Limitations
re

co
gn

iti
on ResNet-CIFAR 10 [65]

(feature extractor︸ ︷︷ ︸
encoder

+ recognizer︸ ︷︷ ︸
decoder

)

The scheme greatly reduces the com-
pression rate while ensuring recogni-
tion accuracy and dramatically reduces
system complexity and processing la-
tency.

This scheme is applicable only to a
specific SNR range and requires re-
training when the channel changes,
thus introducing additional overhead.

im
ag

e

tr
an

sm
is

si
on

Attention-integrated DNN [67]

CNN︸︷︷︸
FE module

→ Attention - based DNN︸ ︷︷ ︸
AF module

SNR
|← . . .︸ ︷︷ ︸

encoder(decoder)

By integrating SNR into SE, the
scheme can operate successfully over a
wide range of SNRs with lower com-
putational/storage complexity than that
of the basic DNN-based structures.

The effectiveness of the scheme is just
demonstrated in AWGN channel. The
robustness and adaptability of the algo-
rithm are still to be verified and studied
under more general models.

cl
as

si
fic

at
io

n

MAE with ViT and codebook [68]

(MAE→ViT
codebook
|←︸ ︷︷ ︸

encoder

+ ViT
codebook
|←︸ ︷︷ ︸

decoder

)

Based on MAE, the scheme achieves
high SE efficiency by reducing the
image spatial redundancy and resists
largely the interference of semantic
noise on classification with codebook.

The complexity of the system is high,
which poses difficulties in training the
SE model. For large image transmis-
sion, the feasibility and effectiveness of
this scheme are yet to be verified.

LSTM [70]

(BiLSTM︸ ︷︷ ︸
encoder

+LSTM︸ ︷︷ ︸
decoder

)

Compared with Gzip and Huffuman,
the scheme can achieve remarkable low
word error rate for large-size sentences
and high bit-drop rates.

The scheme can only capture the rela-
tionship among words and fails to de-
scribe syntax information. This makes
it hard to deal with complex sentences.

te
xt

tr
an

sm
is

si
on

Transformer [38]

(

multi-head attention
⇓

Transformer︸ ︷︷ ︸
encoder(decoder)

)

The multi-head attention module in
Transformer can capture long-range
dependencies in sentences in parallel
with low complexity, thus extracting
accurate SI.

The attention structure in Transformer
is fixed, which makes it hard to deal
with noise interference or polysemy,
such as “mouse” has a different mean-
ing in computing and biology.

Universal Transformer [76]

(

multi - head attention
⇓

Transformer
ACT
|←︸ ︷︷ ︸

encoder(decoder)

)

The scheme can be considered as a per-
symbol self-attentive RNN, which can
capture more precise SI and flexibly
respond to varying channel conditions.

Due to the loop play introduced by the
adaptive circulation mechanism, com-
putational complexity increases, which
causes extra processing latency and
computing resource demand.

CNN [79]
(CNN︸ ︷︷ ︸

FE

→ CNN︸ ︷︷ ︸
FA︸ ︷︷ ︸

encoder

+CNN︸ ︷︷ ︸
FD

→ CNN︸ ︷︷ ︸
AG︸ ︷︷ ︸

decoder

)

The SE model is simple and easy to
train. The scheme is remarkably com-
petitive at low SNRs.

The basic SE model fails to extract
semantically enriched information and
adapt to changing channel conditions.

tr
an

sm
is

si
on

Squeeze-and-excitation network [81]

(

attention
⇓

SE-ResNet · · ·︸ ︷︷ ︸
encoder

+

attention
⇓

SE-ResNet · · ·CNN︸ ︷︷ ︸
decoder

)

Due to the introduction of the atten-
tion mechanism, SE-ResNet-based SE
model can achieve higher performance
in terms of PESQ and SDR at any
given SNR than CNN-based one.

This scheme can only perform the
training of SE model under a fixed
SNR. A dynamic and flexible SE
model that adapts to channel changes
remains to be studied.sp

ee
ch

re
co

gn
iti

on CNN & RNN [83]

(CNN→ BiRNN︸ ︷︷ ︸
encoder

+ greedy︸ ︷︷ ︸
decoder

)

The scheme achieves a much lower
character-error-rate and word-error-rate
compared to the traditional communi-
cation systems under low SNRs.

The scheme becomes sub-optimal as
SNR increases, since the DL-based
methods always generate an avoidable
error floor.

m
ul

ti-
m

od
el

da
ta

V
Q

A

ResNet & LSTM & MAC network [87]

(

Re sNet - 101︸ ︷︷ ︸
image encoder

Bi - LSTM︸ ︷︷ ︸
text encoder

+ MAC network︸ ︷︷ ︸
decoder

)

Compared to the traditional method,
where the recovered image and text are
input to MAC, the end-to-end scheme
achieves significantly higher answer
accuracy.

Since the scheme assumes perfect
channel state information, it is not ro-
bust to channel changes in a real-world
environment

Transformer [88]

Transformer︸ ︷︷ ︸
imageencoder

Transformer︸ ︷︷ ︸
textencoder

+

Transformer→
↑

Transformer→
FC

Information
Fusion︸ ︷︷ ︸

decoder

The scheme achieves comparable an-
swer accuracy in both perfect and im-
perfect channel state information and
is considerably higher than traditional
methods.

The complex model design introduces
extra computing latency and computa-
tional resource consumption for train-
ing, especially for text encoding. The
size of the images used for training
and testing is small. The superiority of
this model over traditional methods for
VQA with large image sizes is yet to
be verified.
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from image SI by another attention module [87]. Finally, the
write unit integrates the information and outputs the predicted
answers to the questions [87]. Compared to the traditional
method, where the recovered image and text are input to MAC,
the end-to-end scheme achieves significantly higher answer
accuracy. However, since the scheme assumes perfect channel
state information due to the lack of attention mechanism, it
is not robust to channel changes in a real-world environment.
Furthermore, in [88], the authors unify the semantic encoding
structure for both image transmitter and text transmitter based
on Transformer. Meanwhile, they propose a new semantic
decoder network that consists of two modules: the query
module and the information fusion module. The query module
adopts layer-wise Transformer, which consists of Transformer
encoder layer and Transformer decoder layer. Different from
classical Transformer, layer-wise Transformer in [88] takes
the output tokens of each encoder layer as the input of
each decoder layer, which can exploit more keywords in the
text information and the corresponding regions in the image
information. The fusion module then fuses both information to
get the answer. Compared to [87], the scheme achieves compa-
rable answer accuracy in both perfect and imperfect channel
state information and is considerably higher than traditional
methods. However, the complex model design introduces extra
time consumption and computational resource consumption
for training, especially for text encoding. Meanwhile, the size
of the images used for training and testing is small. The
superiority of this model over traditional methods for VQA
with large image sizes is yet to be verified. An instance of a
simple VQA task can be found in Fig. 6.

B. RL-based SE

Intuitively, the learning process guided by sophisticated
semantic metrics can facilitate more accurate SE. However,
many existing semantic metrics in other fields are non-
differential. To overcome the stringent requirements of DL
for the loss function to be differentiable, RL is treated as a
promising alternative.

RL is regarded as a promising paradigm to address the
issues with user-defined, task-specific, and non-differentiable
task metrics in some other fields [91]–[93]. Considering the
success of RL in sequence-generation tasks [94]–[96], the
authors in [97], [98] make the first attempt to integrate RL into
the end-to-end SemCom system for text transmission, where
the encoder-decoder scheme can be viewed as the agent that
interacts with an external “environment”, (i.e., sentences). In
the general RL framework, the tasks required to be converted
into a Markov decision process (MDP), which consists of
five elements: state, action, policy, reward, and long-term
return [93]. In their proposed encoding-decoding scheme, the
LSTM is employed to provide the policy. Similar to the MDPs
for other sequence-generation tasks, the state is defined as the
recurrent state of the decoder and the previously generated
words. In this sense, the transition between two adjacent states
is determined by the next generated token. Meanwhile, the
action of the RL agent is to generate a new token, and thus
the action space is the dictionary dimension. Moreover, the

semantic metrics of the whole recovered sentence can be
intuitively treated as the long-term return

However, the determination of the immediate reward func-
tion form is particularly tricky. Unlike most RL-based strate-
gies with well-defined rewards at each time step, the rewards
during decoding cannot be directly measured until the end of
a sentence. To overcome this challenge, several methods have
been proposed. The first is using the Monte Carlo search to
obtain the reward in each time step [96], [99]. The second
is training another neural network to estimate the reward
or for an incomplete sequence [100]. However, the above
methods are more time-consuming and resource-consuming
and introduce the risk of divergence in a huge action and
state space [97]. Moreover, quantifying the reward value in
each time step may be inconsistent with ensuring the semantic
meaning of the whole sentence. Thereby, in [97], the authors
adopt a newly emerging approach named self-critical sequence
training (SCST) [101]. The idea of SCST is to utilize the
output of its own test-time inference algorithm to normalize
the long-term rewards it experiences, rather than to focus on
estimating the reward, or how the reward function should be
normalized [101], [102]. In [97], the mean long-term return
(i.e., the semantic metric for the whole sentence) from a group
of selected samples is used to normalize the rewards and
treated as the baseline term in the objection function, which
enables stable and self-supervised training at the cost of nearly
no extra computations. Meanwhile, it is necessary to note that
the policy network is not updated until the end of a complete
transmission of a sentence.

In the simulation, the proposed RL-based scheme is trained
with the semantic similarity metric of CIDEr, and the per-
formance is evaluated by BLEU scores from 1-gram to 4-
gram. The size of gram means the length of the phrase
considered in calculating the similarity between the reference
and candidate sentences, which is detailed in Section V. By
comparing the proposed scheme with the DL-based SemCom
trained with cross-entropy loss, one can be found that, with
the increasing size of the gram, the superiority of RL-based
algorithms over DL-based scheme becomes more significant.
This demonstrates the capability of the proposed scheme
to catch the underlying semantics, since the longer phrases
generally carry more abundant semantic meanings.

C. KB-assisted SE

Intuitively, given raw data, the SI may be distinct for
different communication goals [8]. ples of image transmission
depicted in Fig. 9, the receiver may have to perform different
tasks, such as classification based on different attributes,
detection of different targets, or simply replication. In this
sense, the SI applied to different tasks is different, but is
still highly correlative. Therefore, if we employ a general
DL-based SE model for multi-tasks, the extracted SI may be
redundant for specific tasks. Otherwise, repeatedly performing
SE on the same raw data based on multiple DL-based SE
models that are discussed in Section III-A may cause much
system redundancy. To address this issue, a suitable approach
is to extract all the SI units conveyed by the raw data and
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Fig. 7: Two types of KB models [103]–[105].

correspond individual communication goals to the different
combinations of SI units. To this end, a shared KB is required
to be established at the transmitter and receiver in advance
before the task request is sent. Meanwhile, the process of SE
can be treated as refining the importance of each SI unit to
individual communication goals.

KB is a technology that has been widely used in automated
AI systems to store the data with formal representation al-
lowing for inference [106]–[108]. In general, a typical KB
consists of a computational ontology, facts, rules, and con-
straints [11]. Particularly for the SemCom system, the KB
should be composed of SI, goals of the communication tasks,
and the possible ways of reasoning that can be understood, rec-
ognized, and learned by all the communication participants [9],
[109]. Specifically, the KB can be employed to record the
relationship between each SI unit and each task, as well as
quantify the level of importance of SI for different tasks, thus
instructing the SE under different channel conditions, when
the communication task changes.

Following this, in [109], the authors first manage to establish
a simple KB based on CNN for an image classification task
and accomplish the KB-assisted SE. In their work, CNN is
treated as a SI generator, wherein the feature maps for each
layer output indicate different aspects of SI of the source
images, such as the color, the texture. Since the parameters
of a well-trained CNN model can identify the optimal form
of feature maps that represent the original image (i.e. SI), the
gradients of the CNN’s output can be treated as the importance
weights of the feature map to different classes [109]. Thereby,
the KB is established by storing the importance weights of
all feature maps for each class. Next, based on the KB,
semantic encoding can be accomplished by refining the SI
that is relevantly related to the specific task. In addition, since
encoding and decoding are mutually reversible processes, the
scheme is also implemented in an end-to-end manner. In this
sense, the KBs in both the transmitter and receiver should be
synchronized by a shared KB at an authoritative third party or
a virtual KB. If the two KBs on the two sides mismatch, the
semantic noise may be generated during the SI inference [30].
Since KB-assisted SE focuses only on the goal-related SI,

the KB-assisted SemCom with CR3 of 98% can still achieve
more than 40% classification accuracy gains compared with
the conventional communications at 10 dB. However, it still
has room for enhancement, such as the optimization of neural
network structure and loss function [110]–[112].

In addition to the study of the KB establishment of the
semantic KB, in works [103]–[105] on resource allocation
in SemCom scenarios, some ideas are proposed for the KB
storage model of the KB. From now, there are two available
kinds of KB models as shown in Fig. 7. In [103], a hierarchical
structure is proposed for the semantic KB of a task set, wherein
the indivisible units of SI are called beliefs. The higher the
level that a belief belongs to, the more SI it contains. For a
task in the considered task set, there may be multiple feasible
semantic representations (SRs) and each SR only includes one
belief from each level of the hierarchy [103]. However, such
a hierarchical structure is hard to incorporate the relationship
between multiple descriptions and a task. Moreover, in the
hierarchical structure, a belief in a higher level is completely
dependent on a belief in its previous level. Therefore, it is not
flexible enough to represent the combination of several beliefs
belonging to discontinuous levels. In [9], the authors point out
that a graphical structure is one potential solution adopted to
model semantic knowledge, where any two SI units can be
linked by an edge if necessary. In [104], [105], the authors
firstly employ the graphical structure to model the semantic
knowledge for text transmission according to the grammatical
structure of sentences. In their works, the tokens encoded with
fixed bit length are treated as vertexes, and the relationship
between two tokens is reflected by the edge. However, the
issue of modeling a generic semantic KB is still open.

D. Semantic-native SE

All the above three SE methods rely on well-trained neural
networks based on a large amount of labeled data, which
makes their works only feasible for communication systems
with unvarying SI. Hence, they are powerless for scenarios
where semantics vary over time or communication context,
and such scenarios are more common in real life [113].

3The value of CR means the percentage of feature maps that are ignored.
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Fig. 8: An illustration of triangle of meanings model [113],
[114].

Specifically, In this sense, transforming “passive learning”
into “active learning” is particularly imperative for SE in
communication with varying semantics and context.

Indeed, there have been some primary research studies
fitting the above idea called emergent communication [115],
wherein the semantics and goal-oriented representations are
not predefined and are required to be learned during the itera-
tive communication between multiple intelligent agents [113],
[115]. However, most of the works merely focus on some
simple and specific AI tasks such as image-related referential
games [116], where the accomplishment of SE may be spuri-
ous owing to the inscrutable patterns of the single transmitted
objects [117].

In [113], the authors open up the black box of SE with
the focus on a point-to-point communication scenario between
two agents who can communicate in both directions. In
analyzing the reliability (which is measured by the recog-
nition accuracy in the considered scenario), they introduce
the triangle of meanings [114] for human communication
architectures in linguistics. As shown in Fig. 8, the vertices
of the semantic triangle connect the three spaces of the
observation of the input, concept (or meaning), and symbol
(or representation) [113]. The edge from an input embedding
to its concept is termed conceptualization, and the edge from
the concept to its symbol is termed symbolization, while
their opposite directions represent deconceptualization and
desymbolization [113]. Based on this model, they propose
two SemCom systems (indexed by System 1 and System
2, respectively). System 1 can be summarized by a multi-
triangular model with a shared input embedding. The con-
ceptualization process can be interpreted as a stochastic soft
decision or the likelihood of a decision in ML, which plays
a similar role in unconscious pattern recognition to the ML
in the aforementioned methods. In addition, the symbolization
process is assumed to be predetermined among the agents. Due
to the fact that rational speakers are self-aware of what they
say, in System 2, the authors infuse contextual reasoning [118]
process for each agent. In linguistics, contextual reasoning
is often computationally described using the rational speech
act model [119]–[121], which is rooted in the Gricean view
of language use [122]. In the proposed system, contextual
reasoning is equivalent to communicating with a virtual agent
that mimics and simulates its listener, which allows the agents
to communicate effectively and efficiently based on reasoning.

To demonstrate the significance of contextual reasoning, the
authors abstract both the systems into stochastic models, and
derive the bit-length of semantic representation in the two
systems with Shannon coding. With the experimental results,
it can be seen that the bit-length of semantic representation is
significantly reduced with high reliability.

E. Some specific SE

The above four SE methods shown in Table VI can be
generalized to semantic-oriented and goal-oriented communi-
cation systems in different scenarios. However, there is no
general approach to SE in semantic-aware communication. In
this subsection, we first give two typical examples as shown
in Fig. 9 to illustrate the motivation of introducing semantic
awareness to communication, as well as the role of SE in
semantic-aware communication.

In [123], the authors focus on a federated DRL task as
shown in Fig. 9(a), where multiple heterogeneous agents
participate in model training in a cooperative manner under
the coordination of a central controller. The agent requiring
training is called the target agent, and the agents that help the
target agent with its training are called source agents. In the
proposed scheme, SemCom plays a role in the construction
of a knowledge graph that records similarities among all the
agents. Based on the KG, a subset of source agents with high
similarity are selected strategically to contribute to the training
of the target agent. In their work, they employ semantic
relatedness to measure the similarity of underlying learning
tasks of the agents [125]. In the knowledge transfer domain,
it can quantify the extent to which the transferred knowledge
from a source agent can potentially help the target agent to
find its optimal policy. In this sense, semantic relatedness can
be regarded as a kind of SI exchanged between the central
controller and agents. It is defined as the average return
value received by the source agent from a target environment
in a limited number of training episodes. Meanwhile, the
training process can be treated as its corresponding SE method.
However, since the average return value is obtained from
limited training steps, the metric may be inaccurate, especially
for a complex target environment with a large state space.
Therefore, the structural similarity is jointly considered during
the similarity KG construction. The structural similarity can
be measured by the central controller based on the cosine sim-
ilarity of the received network parameters of the policy from
agents [126]. Besides, since the DNN parameter dimensions of
heterogeneous agents should be aligned before comparing the
similarity, the principal component analysis (PCA) method and
the zero-padding (ZP) method are employed for compression
and expansion of the source agents’ DNN parameters [127],
respectively. With the simulation, the promising performance
of the semantic-aware CDRL schemes [123] over bandwidth-
constrained wireless networks has been demonstrated by com-
paring with the uniform or random resource block allocation.

In another example in [124], the authors focus on a
non-terrestrial ultra-reliable and low-latency communication
(URLLC) system (as shown in Fig. 9(b)), where an unmanned
aerial vehicle (UAV) swarm employs the centralized training

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3223224

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 23,2022 at 04:34:16 UTC from IEEE Xplore.  Restrictions apply. 



17

TABLE VI: Summary of generic semantic extraction methods.

Semantic-oriented communication

DL-based SE RL-based SE

Semantic 

channel

End to end manner

Encoder Decoder

Description:
The encoder and decoder
are usually modeled as
two separate learnable
NNs, and linked through
a random channel, which
are trained jointly. The
dataset used for training
can be seen as their shared
background knowledge.

Semantic 

channel

End to end manner

Encoder
Decoder

(Actor)

Recurrent 

procedure

Self-critic training

Description:
It is developed on the ba-
sis of DL-based SE. The
decoding process is con-
verted into a recurrent pro-
cedure. By employing self-
critic training, the non-
differentiable metrics, such
as BLEU, can guide the
learning process directly.

Pros:
• Achieve lower CR while preserving the relevant information
• Significant superiority in the low SNR region
• Reduce processing latency in analog transmission without
compromising communication performance
Cons:

• Become sub-optimal in ideal channel conditions due to the
error floor of DL

• The loss Function for guided learning in training can only
be used for differentiable MSE and CE

Pros:
• Achieve more precise SE guided by the specialized semantic
metrics

• Time-related metrics, such as AoI can also be integrated into
the reward to guide SE due to the online paradigm of RL

• Also features the pros of DL-based SE
Cons:

• Frequent interactions with the environment of RL greatly
increases the training complexity

• Applicable only to sequence-generation tasks, such as sen-
tence recovery

Goal-oriented communication

KB-assisted SE Semantic-native SE

Encoder Decoder

KB KBShared KB

Semantic 

channel

End to end manner
Task

Description:
The KB stores all the SI
units conveyed by the raw
data and the importance
of each SI unit to differ-
ent tasks, which is well-
constructed before commu-
nication link establishment.
In each transmission, only
the task-related SI is trans-
mitted according to the KB
and channel states.

Semantic 

channel

Contextual reasoning Contextual reasoning

Cooperative manner Cooperative manner

Encoder Decoder

Description:
It is developed based on
emergent communication.
It converts “passive learn-
ing” to “active learning”.
SI and background knowl-
edge are learned through
interaction and feedback
between the communicat-
ing parties, which does
not depend on an existing
database.

Pros:
• Allow for flexible and more precise task-specific SE
• Applicable to complex communication scenarios with mul-
tiple goals

• Lay the foundation for SemCom-aware resource allocation
due to the quantified data size and importance of SI units
Cons:

• Applicable only to the non-real-time on-demand services
• The construction of KB is computation-intensive

Pros:
• Adaptive to changes in the communication context and goal,
reducing human intervention

• Background knowledge does not need to be shared in real
time

• Some other features such as channel states and QoS require-
ments can be considered in the learning process
Cons:

• The training process is time-consuming and computing
resource intensive

• Convergence of training is hard to be ensured

and decentralized execution (CTDE) multi-agent deep rein-
forcement learning (MADRL) to serve a moving ground user
while avoiding inter-UAV collisions. In their work, SemCom
is not employed to enhance the URLLC performance directly,
but to be integrated to the differentiable inter-agent learning
(DIAL) [128] between UAVs to avoid inter-UAV collisions.
DIAL is widely used in CTDE MADRL framework. In the
traditional DIAL, the agents exchange their respective ob-
servable states, which are treated as an input of their actor
models. Then during the training process, the raw state data
are progressively translated into meaningful information for
better inter-agent collaboration. However, training from scratch
could be inefficient. To that end, the authors in [124] perform
SE on the observable state before exchanging information.

Specifically, each UAV n constructs a local star-topological
graph, where the leaf nodes are all its observable UAVs. The
SI about UAV m at step t is recorded as the weight of the
corresponding edge (i.e., ϖ̄t

n,m in Fig. 9(b)), which reflects the
level of attention to UAV m , when UAV n takes its action.
Considering the fact that UAVs should pay equal attention
to each other for collision avoidance, the attention paid to
UAV m by UAV n is derived based on an RNN with the two
inputs. One is the attention feature extracted by UAV n from
its observable state about UAV m based on the self-attention
mechanism [60]. The other is the SI about UAV n at last step
that is sent by UAV m to UAV n. From the simulation, it can
be seen that using SI as the input of actor model instead of
raw state data can significantly improve the training efficiency.
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Fig. 9: Examples for SE in semantic-aware communication [123], [124].

F. Lessons learned summary

1) Lessons learned for DL-based SE: Comparing the DL-
based SE methods as summarized in Table V, we can observe
that the attention mechanism plays an essential role in SE
performance enhancement due to its excellent performance in
capturing long-range dependence of the input. The advantage
of DL-based SE is that it can extract important information
from the whole raw data, and then re-aggregate and re-extract
it at different layers, thus effectively removing redundant
information. In this sense, compared with the content-blind
traditional encoding and decoding, DL-based SE can achieve
much lower CR without losing relevant information. There-
fore, under the low SNR region, the superior performance of
DL-based SemCom is especially remarkable. Moreover, with
the well trained end-to-end SE model, the DL-based Sem-
Com achieves good performance in analog communication.
Due to the absence of quantization and complex modulation
processes, such as 16-QAM and QPSK, the data processing
delay before transmission can be significantly reduced, which
shows its potential for low-latency communications.

However, the DL technique has an inherent weakness, i.e.,
the unavoidable error floor [86]. Therefore, under ideal channel
conditions, the DL-based SemCom is often suboptimal com-
pared with traditional communication. Hence, how to over-
come the performance bottleneck under the high SNR region
is worth future investigation. Moreover, during the end-to-end
training, the back-propagation through transceivers requires
the loss function in the DL paradigm to be differentiable [98].
In this sense, all the above studies still apply the commonly
used loss functions in DL (i.e., cross entropy (CE) and mean
square error (MSE)) to train neural networks, which leaves the
existing works far from the desired SemCom. In other words,
all the above-mentioned architectures merely achieve semantic
coding for a reliable and efficient transmission [98]. With
such end-to-end architectures, as the semantic and channel
encoders and decoders need to be trained jointly, the SE and
recovering are treated as a black box [113]. Due to the lack of
explainability and interpretability for the available DL-based
SE, the informativeness of the extracted SI is hard to measure

and it is also unclear how to make relevant improvements.
2) Lessons learned for RL-based SE: Comparing the DL-

based SE and RL-based SE, the main difference of RL-
based SE lies in that the decoding of the whole sentence
is converted into a recurrent procedure. That is, the output
of the RL-based decoder is a single word, and the decoded
word is the input for the next word to be decoded. Such a
recurrent procedure can reinforce the learning of correlations
among the words within a sentence during the training process,
thus allowing the decoding policy to learn relevant features
of the non-differentiable semantic metric function. Moreover,
as RL can be treated as an online paradigm, in addition to
error-based metrics, some other metrics such as AoI-based
metrics and transmission delay can also be integrated into the
reward, which is another promising advantage for RL-based
SE methods [129].

Such a method is naturally applicable to sequence-
generation tasks, such as sentence recovery. In [97], [98],
the authors also discuss the generalization capability for non-
sequence tasks with an example of image transmission. They
propose a pixel-level recurrent decoding scheme, where the
state of MDP is defined as the intermediate decoded image
obtained by increasing or decreasing the pixel values with
a small number. However, the effectiveness and necessity of
such a conversion for image decoding for the performance
enhancement of SemCom are unclear. Moreover, even if such a
conversion from the decoding process to a recurrent procedure
is feasible to implement in practice, it increases the decoding
time.

Moreover, learning the optimal policy through interactions
with the environment inevitably increases the training com-
plexity. It is still a critical challenge to train such a complex
model from scratch for high-dimensional tasks [98]. In the
above works, the initial parameters are utilized the pre-trained
model with stochastic gradient descent on the deterministic
loss function. Simulation results show that the accuracy is
improved by 3% in the middle SNR region with the RL-
based SemCom based on the non-differential semantic metric
optimization by comparing that with the DL-based counterpart.
However, for the more complicated language models like
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Transformer, whether the RL-based SE is still feasible needs
to be further explored and studied.

3) Lessons learned for KB-assisted SE: In fact, KB-assisted
SE also heavily relies on the DL models. Different from
the well-trained DL-based model that performs real-time SE
for the new raw data, KB-assisted SE requires the KB for
raw data to be well-constructed and synchronized among
the parties before communication link establishment. This
makes it merely suitable for non-real-time on-demand services.
Moreover, compared to the single model training in DL-based
SE, the construction of a sophisticated KB is a much more
computation-intensive task. This means that the KB cannot
be updated frequently, so this method is more suitable for
scenarios where the data source is stable.

In addition, as discussed earlier, by introducing communi-
cation goals into the SE, KB-assisted SE can improve multi-
task system efficiency in two aspects. One is to improve
communication efficiency by extracting flexibly the SI related
to a certain task in each transmission. The other is to improve
computational efficiency by avoiding repetitive SE of raw
data. Beyond these two advantages, the construction of KB
also lays the foundation for resource allocation for complex
SemCom scenarios with multiple tasks. Since the size and
importance of each SI unit can be recorded in the KB model,
the SemCom-aware resource allocation for each SI unit can
be done with different quality of service (QoS) requirements,
such as delay and reliability. This differs from the resource
allocation in traditional communication where all the data
packets are treated equally, which is discussed in detail in
Section IV. Furthermore, it is worth noting that the semantic
KB construction relies heavily on the explainability of SE
models. However, most of the available SE models have a
black-box nature. To this end, enhancing the explainability of
SE is the key to breaking the bottleneck of existing SemCom
research.

4) Lessons learned for semantic-native SE: Comparing the
four SE methods summarized in Table VI, semantic-native
SE is the most similar to the way of human conversational
communication. The first three SE methods require that the
background knowledge of the transmitters and receivers are
fully synchronized before SE model training and determina-
tion, e.g., the semantic encoder and decoder models are trained
based on the same dataset. In contrast, semantic-native SE
relaxes this constraint. Contextual reasoning for the agent is
more like the process of capturing and inferring the way of
thinking of a human during a conversation with a stranger. As
communication parties become “familiar” with each other, the
background knowledge of the agents converges. Undoubtedly,
the semantic-native SemCom system is with a high degree of
flexibility and adaptivity, which is more toward the vision of
an intelligent and autonomous 6G network [130]. However, the
above analysis is again only based on a representative model.
It remains a huge challenge to put it into practice.

5) Lessons learned for specific SE: From the two examples
of a multi-agent collaborative task discussed in Section III-E,
we can see that SemCom in the above tasks only serves to
facilitate cooperation and indirectly improve task performance.
In contrast to semantic-oriented and goal-oriented communica-
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Fig. 10: Semantic information transmission and challenges
related to wireless environment, limited network resource, and
heterogeneous networks.

tions, SE in semantic-aware communication is not performed
on the raw data generated directly by the source agent. The
relevant SI for cooperation is obtained through analyzing the
properties of the task itself and the behavior of the agents.
This makes the process of SE have to be more tailored and it
is difficult to find a universal and unified approach. However,
it is clear that semantic-aware communication will play an
essential role in task-oriented communication, as exchanging
SI can enhance the knowledge between agents for better
collaboration. Moreover, an efficient SE can greatly reduce the
communication overhead caused by exchanging information
between agents.

IV. SEMANTIC INFORMATION TRANSMISSION AND
CHALLENGES

The focus of discussion in this section shifts from semantic-
related to communication-related challenges and techniques.
While conventional and SemCom systems use different meth-
ods to encode and decode information, they both face the
same communication constraints, such as unpredictable chan-
nel conditions, limited transmission, and processing resources.
However, unlike prior works in conventional communication
systems, the solutions in SemCom are required to address
new challenges in modern communication systems. In the
following, as shown in Fig. 10, we discuss the challenges
and techniques related to the wireless environment, limited
network resources, and heterogeneous networks in SemCom.

A. Wireless environment

The fading effect of the wireless channels has a great
negative impact on the stability of data transmission, whether
in conventional communication or in SemCom. To mitigate
the negative effects of fading channels, in conventional com-
munication systems, source and channel coding schemes are
carefully designed. Specifically, source coding encodes the
data into a sequence of symbols with optimized length, and
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channel coding adds redundant symbols to the sequence to de-
tect and recover data corruption during wireless transmission.
In the SemCom systems, the source and channel coding can be
connected more tightly with the help of AI. Jointly designing
and training the source and channel coding are shown to
benefit data transmission in the DL-based communication sys-
tems [70]. However, the AI-based methods cannot currently be
explained by explicit mathematical expressions. To overcome
this obstacle, SemCom system designers have to consider
how to make connections between the complex and changing
wireless environment and sophisticated SemCom mechanisms,
so as to obtain insights to guide the system design. Thus, we
discuss the impact of the varying fading channel, uncertain
SNR, and bit error on the SemCom performance.

1) Varying fading channel: In conventional wireless com-
munications, several classical channel models are commonly
used in performance analysis, e.g., Rician, Rayleigh, and
Gaussian channel models. Moreover, to unify system perfor-
mance with various channel environments, generalized fading
distributions are proposed, e.g., α− µ [131], Fisher-Snedecor
F [132], FTR fading models [133]. These channel models
have various parameters to represent the different conditions
of the wireless environment, such as the strength of the shadow
effect and the multi-path effect. However, in SemCom systems
that have an end-to-end structure, modeling the channel layer
is a challenging task. Most of the existing works model the
channel layer in two ways: fixed channel layers with the fading
models used in conventional wireless communications, and
generative channel layers with the neural network.

Fixed channel layer modeling scheme: In the fixed chan-
nel layer modeling scheme, the channel layer is modeled as a
fixed fading model that is used throughout the training process.
For example, the erasure channel is used in [70] to model the
dropping of data packets. The input of the erasure channel is a
binarized bit vector from the encoder. Every element in the bit
vector can be −1 or 1, and the dropped element will become
0 at the output of the erasure channel. A drop probability is
determined before the training. Eventually, the elements of the
output vector after the erasure channel are in {−1, 0, 1}. This
process is similar to the dropout technique used to prevent
the over-fitting problem in deep neural networks. Hence a
dropout layer can be used to represent the erasure channel of
the communication systems. For input that is not quantized or
binarized, communication channels such as AWGN, Rayleigh
channels, and Rician channels are considered. Recent research
works in SemCom for text [38], speech signals [81] and
multimodal data [87] consider the channel layer as AWGN,
Rayleigh channels, and Rician channels, for the training pro-
cess. However, the performance evaluation is done with the
same channel conditions in the training, without considering
the fact that the changes in the wireless environment can
lead to the change of the suitable channel model. Another
drawback of using a fixed channel layer modeling scheme is
that, if the SemCom model is trained under a certain fading
channel, it is impractical to retrain the model for each possible
channel condition and load all these models to the transmitter
and the receiver. Although the trained model has shown some
robustness, e.g., the authors in [81] tested the model trained

with Rician channels under AWGN and Rayleigh channels
while achieving MSE loss less than 1 × 10−4, we cannot
explain the upper-bound of the robustness, and are not sure
whether the model will fail when the environment changes.
Instead of training with fixed channel layers, the generative
channel layer modeling scheme is used to capture the dynamic
behavior of the channel states.

Generative channel layer modeling scheme: The typical
generative network adopted in existing works is generative
adversarial net (GAN) [134]. There are two main components
in GAN, i.e., a generator and a discriminator. The generator
aims to generate data samples that are as similar to real data
samples as possible. The discriminator will be given real
and generated data randomly and it will output a label to
indicate whether the given data is real or generated. During
the training process, the objective loss function helps the
generator to generate more realistic data and the discriminator
to output more accurate labels. To generate category-specific
data, the conditional GAN [134] is proposed where the extra
context information is provided to the GAN to obtain samples
of the given context. In [135], a conditional GAN is used
to model the channel conditions. The conditional GAN is
provided with both the pilot information and encoded signal
from the transmitter and asked to generate an output signal
that is similar to the real data. To evaluate the performance of
the proposed conditional GAN in real channel conditions, the
trained model is tested with the WINNER II channels [136].
It is shown that the conditional GAN model outperforms the
baseline system in terms of BER and BLER, especially when
the SNR is over 10 dB. Although the Generative channel layer
modeling scheme improves the adaptability of the training
model to the wireless environment, more training overhead
is required than the fixed channel layer modeling scheme.
This motivates us to think about the tradeoff between the
performance and resource overhead.

Overall, fixed channel layers and generative channel layers
provide wireless channel modeling during the training of the
SemCom systems. The choice of different schemes has an
impact on the performance of SemCom. One possible solution
is to combine the advantages of both schemes. For example, a
two-phase training strategy is proposed in [54] to adapt to the
real channels. In Phase I, the model is trained with a suitable
channel model to obtain model parameters with reasonable
accuracy. In Phase II, the receiver is fine-tuned over the actual
channel. The fine-tuned autoencoder constantly achieves lower
BLER than the autoencoder without fine-tuning. However, how
to choose the optimal training solution in different wireless
environments is still an open question.

2) Uncertain SNR: After discussing the effects of the chan-
nel environment on the SemCom performance, here we con-
sider the impact of SNR uncertainty on the trained SemCom
model. Note that the influence of the wireless environment is
mainly from the channel model selection, due to the effects
of shadowing or scattering. The SNR uncertainty is from the
effect of noise and interference, as well as the variation in
transmit power, e.g., when adaptive transmit power schemes
are used. Since the fixed SNR approach is typically adopted
in the training of SemCom models, e.g., for text [38], speech
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signals [81] and multi-modal data [87], we need to consider
whether the change in SNR will have a negative impact on
performance.

Several works tested the robustness of the trained model
to SNR. In [81], the model is trained with a fixed SNR of
8 dB, and is then evaluated under SNR from 0 dB to 20
dB. It is found that the model has a higher MSE loss in the
lower SNR region in the test under AWGN channels, Rayleigh
channels, and Rician channels. However, it is still uncertain
whether a model trained at a fixed SNR value can always
be applied to a wide range of SNRs. Furthermore, while
the SemCom constantly achieves higher performance than the
conventional communication systems, both of them suffer a
poorer performance in the lower SNR region. Because low
SNR environments are common in the cellular edge, shopping
malls, or suburban areas, we need to consider the performance
of SemCom when the SNR is low and the accuracy of the
decoded signal is reduced.

To solve the aforementioned problems by making the model
robust to different SNR regions, especially to the low SNR
regime, the authors in [137] proposed an SNR adaptive mech-
anism. In the proposed model, the SNR is estimated by a
pilot signal at the receiver. The estimated SNR value is then
extended to an SNR map that has the same size as the channel
output feature map. Both the SNR and channel output feature
maps pass through a CNN layer before they are added together.
The result of the element-wise addition is used as the input
of a denoising module. A few transposed convolution layers
are used to reconstruct the original image. It is found that,
compared to the model that is trained with fixed SNR, the
model trained with the proposed SNR adaptive mechanism
has a smaller gap of PSNR between the high SNR region
and low SNR region. By considering the SNR information
in the decoding process, the proposed model shows higher
adaptability to the SNR.

Instead of adding the SNR values to the channel features,
another method to enhance the robustness of the SemCom
model is to scale the channel features according to different
SNR values [67]. The training method proposed in [67] adopts
channel-wise soft attention, where each channel feature is
multiplied by a scaling factor. To obtain the scaling factors,
the SNR value is concatenated with the context information
vector extracted from the input image and fed into two fully
connected layers. Each element in the output vector is a scaling
factor of a feature channel. It is shown that, with the help of
the soft attention mechanism, the model can achieve a higher
PSNR compared to baseline models which use basic deep
learning networks without the attention module. In particular,
the model with the soft attention mechanism can achieve more
than 35 dB PSNR when the SNR is high.

However, both of these solutions are designed to solve spe-
cific communication problems. For the generalized SemCom
system, the question of how to ensure that the trained semantic
model can adapt to the variable SNR is still waiting for a
better answer. The boundaries of the generalization capability
of semantic models need to be further investigated.

3) Bit errors: To accommodate the changing wireless envi-
ronment and the uncertainty of SNR, many mechanisms have

been designed to improve SemCom performance. Now we
focus on the bit error correction mechanism [138] that can
further increase the probability that SI is correctly transmitted.

Inspired by error correction algorithms in conventional com-
munication systems, researchers have designed several error
correction schemes for SemCom to minimize the transmission
errors of SI. For example, in [139], hybrid automatic repeat
request (HARQ) is used to reduce the transmission error
of semantic text transmission. With the help of HARQ, a
re-transmission is requested if the received code block has
uncorrectable error. The authors in [139] first develop models
with semantic encoder from [38] and Reed Solomon (RS)
channel coding [140] with HARQ. Then the performance is
further improved by jointly designing source-channel coding
and HARQ. Specifically, the RS channel coding is replaced
by a dense layer to encode the output of the semantic encoder
into a bit vector. To reduce the semantic error, Sim32 encoder
and decoder are developed to detect the semantic similarity
between original and estimated sentences. It is shown that
with the joint source-channel coding and HARQ, the model
achieves lower word error rate and sentence error rate when
BER is larger than 0.06. In addition, new design schemes that
combine correction mechanisms in conventional communica-
tion with SemCom require further study.

B. Limited Network Resource

Several resources, such as bandwidth and transmit power,
are required for data transmission. Resource allocation frame-
works in conventional communication systems aim to mini-
mize metrics such as the bit error rate, packet error rate, and
outage probability. However, the SemCom values the impor-
tance of the information behind the bit flow. This motivates
us to develop the new resource allocation frameworks for the
novel SemCom systems. Typically, in the design of a resource
allocation scheme, the QoS and the QoE should be taken into
consideration to build an effective system. Specifically, the
QoS aims to optimize transmission rate, delay, and throughput
[141], [142], and the QoE focuses on user satisfaction, clarity,
and fluency [143], [144]. In the following, we discuss the
methods of resource allocation in terms of bandwidth and
energy in SemCom.

1) Bandwidth resource: Because the bandwidth resources
are precious for any communication system, an effective
bandwidth allocation is necessary for achieving SemCom to
improve the overall system performance. Unlike the allocation
of bandwidth resources in conventional communications, the
uneven distribution of SI should be taken into account in Sem-
Com, i.e., more bandwidth should be allocated to data/agents
that have more SI.

One possible solution is to jointly perform the bandwidth
allocation during the training process. In [123], a CDRL
algorithm is designed, where multiple agents can coordinate
over a wireless network to share their policies and collabora-
tively learn the best policy for the respective tasks. However,
due to the limited bandwidth, agents that require training
(target agents) can only collaborate with limited amount agents
(source agents). Therefore, the metrics used to identify the
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most helpful agents are important for effective resource allo-
cation. Building on previous works that consider the structural
similarity of the agent model, the authors in [123] include the
semantic relatedness between the agents to construct a KG
to aid the task selection of agents. The inter-agent semantic
relatedness is defined as the return value of the target agent
after a fixed number of training steps under the source agent’s
policy. After jointly optimizing the training loss and wireless
bandwidth allocation, a KG is obtained, in which the values
of the edges between the agents capture the structural and
semantic relatedness between the connected agents. The KG is
then used by the base station to select the most relevant agents
for collaboration during the optimization. Simulation results
show that the system performance can be improved by 83%,
compared to the baseline method that does not consider the
semantic relatedness between the agents. However, the issue
of combining dynamic allocation of bandwidth to semantic
content transmission has not been fully studied. In some
SemCom systems that do not require training, the bandwidth
allocation schemes need to be designed to allocate more
bandwidth for more important transmitted content to ensure
information quality.

2) Energy resource: In addition to the allocation of band-
width resources, the allocation of energy resources is also
an important issue. For the growing number of IoTs with
energy harvesting capabilities, it is important to determine
the importance of information with the help of semantics.
Allocating more energy to transmit data containing richer
SI ensures the efficient use of energy. In addition, semantic
metrics can be used to determine the quality of the collected
energy, which can help build an efficient network market.

Based on the sentence similarity metric proposed in [38], a
semantic based valuation function is used in [145] for energy
harvesting IoT devices to derive the value of harvested energy.
In the proposed system model, there are IoT devices that
adopt SemCom systems and a hybrid access point (HAP)
that transmits energy to nearby IoT devices. The IoT devices
operate by harvesting energy from the HAP [146], [147] to
transmit text data to the HAP. However, the HAP is considered
to serve only one user at a specific time. To obtain the wireless
energy, the IoT devices will submit their bids and the HAP will
decide the winner and payment. A truthful auction mechanism
is proposed so that the IoT devices will bid according to their
true valuation of the energy. Instead of using the performance
metrics of conventional communications, a valuation function
based on the BLEU score and the similarity score is used by
IoT devices to obtain their bid values.

However, at present, the application of semantic metrics in
energy resource allocation is still in the early stage. Many
SemCom networks that require energy-harvesting devices to
work have not been studied, e.g., a UAV-aided network work-
ing with simultaneous wireless information and power transfer
protocol.

C. Heterogeneous Network Devices

For the SemCom network, the wireless communication layer
has a greater impact on the system performance than that of

the end-to-end conventional communications. Because many
heterogeneous devices work in one SemCom network, the
differences in equipment hardware and wireless environments
bring challenges to the system construction.

1) Device capacities: To enable SemCom systems, most
of the existing approaches involve installing encoders and
decoders into the transmitters and receivers respectively. While
the DL-based auto-encoder systems can help to extract mean-
ingful semantic information from raw data effectively, the cost
of implementation is not cheap. Particularly more computa-
tional power and communication resources are required for
the training process. Research shows that scaling up deep
neural networks with correct techniques almost always leads to
better performance [66], [148]. However, scaling up the model
increases the storage requirement to store a higher number
of the model parameters. In reality, communication devices
have limited computational power, communication resources,
and storage capacity. Especially in SemCom networks, it is
unrealistic to assume that all devices have sufficient capacity.
Therefore, in SemCom networks developing effective methods
to balance the performance and cost requirements for hetero-
geneous devices is one of the important challenges.

To make the model proposed in [38] more affordable to
devices in SemCom network with limited computing capabil-
ity, the authors in [75] experimented with model compression
to reduce the size of the model. A joint pruning-quantization
scheme [75] is proposed to compress the model effectively
with the idea of model pruning [149]. In the proposed method,
less significant model weights are zeroed out, and the model
weights that are larger than a pruning threshold remain. To
determine the pruning threshold, the model weights are first
sorted in the ascending order by the weight values, and then
the pruning threshold is selected such that the outcome of
pruning satisfies a pre-defined sparsity ratio between 0 and
1. The sparsity ratio indicates the desired ratio of zeros of
the model weights. The pruned model is then fine-tuned
to recover the performance of the model. The size of the
model is further reduced by network quantization that converts
the model weights from 32-bit float point to m-bits integer,
m < 32. A calibration process is needed to prevent overflows
at the activation layer. In particular, an exponential moving
average (EMA) is introduced to dampen the effect of outliers
in the output of activation. Similar to model pruning, the
model is fine-tuned after the quantization. Remarkably, the
compressed model can achieve a similar BLEU score to the
uncompressed model after model pruning with a sparsity
ratio of 60% and 8-bit integer quantization. However, the
performance loss due to further compression of the semantic
model needs to be systematically investigated. We need to
consider the capacity of different devices in the network and
performance requirements.

2) Connections among IoT devices: For SemCom networks
containing multiple smart devices, we need to design the
network according to the different wireless link environments
of different devices. One solution is to consider the wireless
links as intelligent agents in the training process.

The authors in [150] propose a resource allocation algorithm
for semantic video transmission in spectrum multiplexing

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3223224

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 23,2022 at 04:34:16 UTC from IEEE Xplore.  Restrictions apply. 



23

scenarios in vehicular networks. In the proposed algorithm
[150], semantic understanding accuracy of the video trans-
mission is optimized by a multi-agent deep Q-network. In the
network, vehicle-to-infrastructure (V2I) links and vehicle-to-
vehicle (V2V) links are the agents. Based on the observations
about the environment states, such as channel gains and inter-
ference power under the resource blocks, the agents choose to
reuse spectrum resource blocks. Then, the agents receive the
reward based on the V2I average object detection accuracy
and V2V average transmission rate. Simulation results show
that under the same spectrum and transmit power, the proposed
network constantly achieves higher accuracy of video semantic
understanding than the QoS and QoE based resource allocation
framework, with as high as 70% improvement for the density
of correctly detected objects.

However, when the channel model is not available, the
feedback links are absent for supervised learning. To solve
this problem, the authors in [52] propose a meta-learning
approach for the receiver to adapt to the unknown new channel
condition. Meta-learning which means “learning to learn”
refers to learning the adaptation module in the receiver [52].
The meta-learning method first trains the adaptation rule dur-
ing the training phase. In particular, during the meta-training
phase, the receiver will be meta-trained to update the decoder
parameters based on the output of the physical channel. During
the testing phase, the receiver will self-optimize the model
parameters using the trained adaptation rule. Simulation results
show that the model with meta-training can achieve a lower
BLER than the model with conventional training, when more
than one pilot frame is sent by the transmitter during the testing
phase.

3) Coding and decoding scheme: The coding and decoding
scheme needs to be improved based on the various channel
conditions of different users in the SemCom network.

Unlike the two-phase training strategy which fine-tunes the
model with supervised data, the authors in [98] propose a self-
supervised mechanism in consideration of the varying channel
states. In particular, a message is allowed to be encoded and
decoded multiple times until a stopping criterion is fulfilled.
For every cycle of encoding/decoding, the encoded/decoded
information will be evaluated by a confidence mechanism to
determine its semantic confidence. If the encoded/decoded
information reaches a pre-defined confidence threshold, the
encoder/decoder will release the information for the next
process. Another stopping criterion is when the cycle length
of encoding/decoding reaches a pre-defined maximum cycle
length. With the distillation and confidence mechanisms, the
encoder and decoder can fine-tune the encoded and decoded
information in a self-supervised way, regardless of the chan-
nels.

Moreover, in a multi-user scenario, the fluctuation in re-
sources, such as available spectrum and transmit power,
can have a non-negligible impact on the SemCom perfor-
mance [151]. To this end, the variable-length semantic en-
coding, which is comparable to scalable video coding [152]
and multiple description coding [153] in conventional com-
munication, urgently needs to be investigated to cope with the
dynamic SemCom network.

D. Lessons learned summary

1) Lessons learned for wireless environment: The trans-
mission problems caused by the wireless environment in
classical communications should be considered in SemCom.
However, due to the particular features of the SemCom,
e.g., the differential importance of different bits for the raw
data, schemes designed for the conventional communications
cannot be used directly. Fortunately, many schemes that are
designed for conventional communication systems can inspire
the construction of SemCom systems. For example, the end-
to-end semantic model training requires system designers to
use neural network layers to model wireless fading channels.
Compared with using a fixed channel model in the perfor-
mance analysis of conventional communication systems, a
generalized fading channel that includes a variety of classical
channels as its special case can bring more insights. Similarly,
the introduction of the generative channel layer can offer more
freedom to the training of semantic models.

2) Lessons learned for limited network resources: Different
from conventional communications that consider bit transmis-
sion only, the purpose of resource allocation in SemCom is
to ensure the accurate transmission of semantic information
related to tasks. Therefore, the consideration of semantic in-
formation introduces a new perspective to resource allocation
scheme design in 6G networks. This novel design requires an
in-depth analysis of task requirements and joint optimization
design, to enhance the system performance. As we discuss
above, some literature has attempted to use semantic informa-
tion to guide the resource allocation process, but this paradigm
shift still leaves much room for further research.

3) Lessons learned for heterogeneous network devices: The
heterogeneity of network devices in the network is mainly
reflected in two aspects, i.e., the difference in device capacity
and the difference in the communication environment of
each device. If the heterogeneity in network devices is not
considered when training the semantic model, the trained
model cannot be directly delivered to each device. Specifically,
semantic models trained for high-performance devices may
be large and cannot be deployed to small-capacity devices
such as mobile phones. In addition, the end-to-end semantic
models are influenced by the quality of the wireless channels
between the transceiver devices. Therefore, differences in com-
munication channels also affect the deployment of semantic
models. Moreover, in the design of the coding and decoding
scheme, which is an important component of the semantic
communication network, we also need to carefully consider
the impact of heterogeneity in devices.

V. SEMANTIC PERFORMANCE MEASUREMENT AND
CHALLENGES

Network performance measure’s choices have always been
a nucleus concern in network design and optimization for
generations. In the conventional communication system, due to
the separation of transmission and data’s SI and effectiveness
for achieving specific goals, the communication performance
tends to be evaluated from different network layers through
metrics such as BER, QoS, and QoE, respectively. In constrast,
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in SemCom, the interlayer coupling is enhanced to a great
extent [154]. Hence, the new methods of evaluating commu-
nication performance in terms of semantics must be identified
before the implementation of SemCom in practice. Existing
SemCom evaluations mainly focus on semantic error, AoI, and
VoI. Next, we go into the details about the three basic metric
types and their related combined forms as shown in Fig. 11,
as well as discuss the related remaining issues.

A. Error-based semantic metrics

As aforementioned, different from the metrics of BER and
SER for traditional communications, which are concerned with
the accuracy of each bit and each symbol and treat all the
bits and symbols as equally important, the error-based metrics
in the SemCom care about whether the meaning intended by
the transmitter is equivalent to the meaning understood by
its destination, i.e., semantic similarity [11]. Moreover, the
available semantic metrics are all task-specific and there is
not yet a general metric for different types of embedding [12].
Below we discuss the error-based semantic metrics in terms
of specific applications.

1) Semantic metrics for text data: At the moment, text
transmission has received the most attention in the study
of SemCom. Semantic similarity in text transmission usually
refers to the exact degree of meaning conveyed by a whole
sentence. To mathematically quantify the similarity, some
researchers resort to some pioneering works in NLP, and apply
the following metrics in the performance evaluation of their
works.

• Bilingual evaluation understudy (BLEU): Initially,
BLEU is a method for automatic evaluation for machine
translation [155], which is in line with what semantic
measurement needs to do in the SemCom system. BLEU
is used to compare n-grams of the candidate with the n-
grams of the reference translation and count the number
of matches, where n-grams represents the size of a word
group. For example, for sentence “cat is on mat.” 1-gram:
“cat,” “is,” “on” and “mat,” 2-grams: “cat is,” “is on”and

“on mat”. It is first introduced into SemCom in [38],
where the n-grams precision score denoted by pn depends
on the difference between the minimum frequency of one
element in the n-th grams. In this sense, the BLEU for
the whole sentence is calculated as the product of the sum
of the precision scores for the grams of all sizes and a
brevity penalty (BP). The BP is determined by the length
of the candidate (recovered) and reference (transmitted)
sentences. The longer the candidate sentence is compared
to the reference sentence, the lower the BLEU score is.
Moreover, to make the ranking behavior more noticeable,
BLEU is commonly used in its expression in the log
domain.

• Consensus based Image Description Evaluation
(CIDEr): CIDEr is proposed as an automatic consensus
metric of image description quality in [156], which is
originally used to measure the similarity of a generated
sentence against a set of ground truth sentences written by
humans. Hence, it can also be used as a semantic metric
for text transmission [97]. Similar to BLEU, the similarity
between two sentences is calculated based on the set of
n-grams presented in it. The difference is that, in CIDEr,
not just one reference sentence is considered, but a set of
reference sentences. When calculating sentence similarity,
it takes into account the similarity between the candidate
sentences and all semantically similar sentences in the
reference set.

• Sentence similarity: Sentence similarity is a new metric
initialized in [38] and [139] for SemCom based on
bidirectional encoder representations from Transformers
(BERT). BERT is a state-of-the-art fine-tuned word repre-
sentation model [148], which employs a huge pre-trained
model including billions of parameters used for extracting
the SI. Fed by billions of sentences, the performance of
SI extraction has been demonstrated in [148]. To this end,
the sentence similarity is calculated directly based on the
cosine similarity of the semantic features extracted by
BERT.

It is to be noted that, although the BLEU and CIDEr have con-
sidered some of the linguistic laws, such as that semantically
consistent words usually come together in a given corpus [97],
they remain at the level of calculating the differences of words
between two sentences and have no insight into the meaning of
the whole sentence [139]. In this sense, the metric of sentence
similarity is much closer to desired SemCom paradigm, as
the well-trained BERT model is sensitive to polysemy ( e.g.,
the word “mouse” with a different meaning in biology and
machine), which allows it to extract information in a sentence
level.

On the other hand, the non-differentiability of these metrics
reduces their practicality, since they cannot apply to DL-based
SE, and the computation complexity of RL-based SE is con-
siderable. Hence, even if both BLEU and sentence similarity
have been proposed in [38], the training pipeline in the DL-
based SemCom system still adopts CE loss. Moreover, for
sentence similarity, the pre-trained BERT network embedding
introduces much more resource consumption in the training
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process and makes it hard to generalize in other tasks.
2) Semantic metrics for audio data: Similar to text data, the

audio data is also very close to the human natural language.
Thereby, for the SemCom for audio transmission, semantic
similarity can be explained by the ease with which the receiver
understands the decoded audio signal, i.e., intelligibility. Some
similar works have been studied in the field of audio signal
processing as below [157]–[159].

• Signal-to-distortion ratio (SDR): SDR is originally de-
fined based on the usual definition of the SNR with a
few modifications in [157]. In [82], it is introduced into
SemCom the recovered signal as a performance metric,
which is expressed by the L2 error between the transmit-
ted speech signal and ŝ. Compared to MSE, the ranking
behavior of the difference between s and ŝ in SDR is
more remarkable. Besides, the numerical precision of this
measurement is lower for high-performance values than
for low-performance ones, which is more intuitive for
the design of the measurement method. However, SDR
does not go any further than MSE in terms of semantic
awareness.

• Perceptual evaluation of speech quality (PESQ): PESQ
is a specialized quality assessment model designed for
speech use across a wider range of network conditions,
which has been standardized as Recommendation ITU-
T P.862. It is utilized in [81] and [82] to evaluate the
performance. It combines the perceptual speech quality
measure (PSQM) and perceptual analysis measurement
system (PAMS) [158]. The basic PESQ diagram of PESQ
is shown in Fig. 12. Different from the above metric
which simply compares the difference between the two
signals, PESQ assumes the short memory in human
perception, which allows it more similar to the human
behavior [81]. However, the method still only looks at
the accuracy of the transmission instead of the semantic
meaning, and thus it cannot provide effective guidance
for semantic compression.

In a nutshell, none of the above approaches evaluates the
performance at the level of semantic understanding. In ad-
dition, only the MSE metric is used in DL for the SE in the
existing works. The SemCom has only reached the semantic
encoding level so far. A semantic measurement with semantic
understanding like BERT and BLEU in the text transmission
is still to be studied in the field of audio SemCom.

3) Semantic metrics for visual data: For the communica-
tion for visual data, there are no general semantic metrics

that are analogous to human perception yet. The commonly-
used metrics in the SemCom for visual data are still shallow
functions [160], such as PSNR [67] and structural similarity
index (SSIM) [161] employed in conventional communication
systems. Moreover, compared to the text and audio data, the
semantic similarity is more context-dependent, that is, it is
hard to distinguish different “senses of similarity”: is a red
circle more similar to a red square or a blue circle [160]?
This imposes challenges to visual semantic metric design.
Meanwhile, similar to text and audio data, the similarity
judgment for visual data must also depend on a high-order
structure [162]. To this end, DL-based feature capture can be
considered as a potential way to assess the image semantic
similarity [12]. In recent years, the internal activations of
deep convolutional networks trained on a high-level image
classification task have been considered to be often effective
as a representational space for a much wider variety of
tasks [160]. For instance, features from the Visual Geometry
Group (VGG) architecture [163] have been used in other
tasks like neural style transfer [164], and conditional image
synthesis [165]. However, how to exploit this approach for
SemCom performance evaluation needs to be further explored.
In addition to image transmission which is only aimed at
ensuring the fidelity of the visual data, there are also many
emerging visual communications for specific tasks like object
recognition and attribute classification, wherein the accuracy
of task execution can directly characterize the effectiveness of
SemCom.

B. AoI-based semantic metrics

The difference between semantic information in commu-
nication and that of other fields such as semantic web and
semantic segmentation lies in its emphasis on time sensitivity.
This feature introduces new dimensions to the accuracy of
semantic information, i.e., the right time [166]. Especially
for some applications, such as location tracking, control,
and situational awareness, the freshness of information has a
significant influence on the action execution at the receivers. In
this regard, some metrics focusing on timeliness are required.

In fact, taking AoI into account in performance evaluation
can be considered as an initial attempt at SemCom [167].
Different from the metric of delay, which primarily measures
the transmission performance without concern for the content
of the packets, AoI-based metrics are utilized to quantify
the staleness of the information received at the destination.
The age of a packet is defined as the difference between the
current time and the timestamp of the packet [168], which
captures how unfresh the data received by the monitor is.
In the traditional content-blind communication paradigm, the
systems just pursue to send updates as fast as possible and
ensure the minimum transmission delay. Undoubtedly, this
requires a lot of bandwidth resources. Moreover, if the delay-
QoS cannot be guaranteed, the backlog of the packets in
the communication system throttles the update and leads to
a monitor having unnecessarily outdated status information.
Fortunately, such issues can be addressed by the scheduling
scheme based on AoI minimization. This is attributable to the
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TABLE VII: Error-based Semantic metrics summary.

Semantic metrics Advantages Drawbacks

BLEU

BLEU is a method for automatic evaluation
for machine translation. It is used to com-
pare word groups of different sizes of the
candidate with that of the reference trans-
lation and count the number of matches.

It considers the linguistic laws,
such as that semantically con-
sistent words usually come to-
gether in a given corpus.

It only calculates the differ-
ences of words between two
sentences and has no insight
into the meaning of the whole
sentence.

te
xt

da
ta

CIDEr

CIDEr is proposed as an automatic con-
sensus metric of image description quality,
which is originally used to measure the
similarity of a generated sentence against
a set of ground truth sentences written by
humans.

Compared to BLEU, it does not
evaluate semantic similarity on
the basis of a reference sen-
tence, but a set of sentences
with the same meaning

Similar to BLEU, it is also
based on the comparisons be-
tween word groups, and the
semantic similarity can only be
made at the word level.

Sentence
similarity

Sentence similarity is calculated as the
cosine similarity of the semantic features
extracted by bidirectional encoder repre-
sentations from transformers (BERT) [38]
from different sentences.

The SI considered in this met-
ric is viewed from a sentence
level owing to the sensitivity of
BERT to polysemy.

BERT is a huge pre-trained
model, which introduces much
resource consumption in the
training process and makes it
hard to generalize in other
tasks

au
di

o
da

ta

SDR
SDR is expressed by the L2 error between
the transmitted audio signal and recovered
audio signal.

The numerical precision of
SDR is lower for high perfor-
mance values than for low per-
formance ones.

SDR fails to capture the hidden
SI of the speech signal, without
any further than MSE in terms
of semantic awareness.

PESQ

PESQ is a specialized quality assessment
model designed for speech used across a
wider range of network conditions, which
has been standardized as Recommendation
ITU-T P.862.

Instead of comparing the dif-
ferences between the two sig-
nals directly, PESQ assumes
the short memory in human
perception.

PESQ still focuses on transmis-
sion accuracy, and thus it can-
not provide effective guidance
for semantic compression.

fact that the fresh data can be given more importance and
transmitted with priority during the scheduling process.

Moreover, owing to the stochastic features of environments,
an appropriate analysis of AoI can be chosen according to the
specific system, such as time-average age and peak age, which
are presented in detail in [169]. However, it should also be
noted that there are still inherent flaws for AoI-based metrics,
that is, they disregard the validity of the recovered data. For
example, in some cases, the monitor is only concerned with
the abnormal and abrupt states at sources [170]. Since AoI
does not consider the value of current states for its monitor,
some useless updates are transmitted to the monitor, which
also results in a certain amount of resource waste.

C. VoI-based semantic metrics

VoI is also a newly introduced metric in communication
systems, especially for networked control systems. Before that,
the concept of VoI is well-known in information analysis
wherein it is defined as the price that a decision maker is
willing to pay for taking the information into account [171].
For conventional communications, VoI can be defined as a
measure of uncertainty reduction from the information set of
the source with a successful transmission [172]. In contrast,
for communications with specific tasks, the VoI needs to be
redefined. In contrast to AoI which just focuses on the timeless
and ignores content, VoI is mainly utilized to measure the
relevance of a piece of information to the communication
tasks. In other words, VoI can be regarded as the quantified
contribution of SI to effectiveness.

Take a remote temperature control system [167] as an
example. In that setting, the central controller is not concerned

with the real-time temperature variation of the sources. The
goal of the system is only to make sure the controller reacts
swiftly to any abnormal temperature rise. In this sense, the data
for the abnormal temperature should be assigned with high
VoI. Moreover, in [109] wherein a task of image classification
is studied, the VoI here is used to measure the importance
of the extracted features to the accurate classification of the
images. However, in most cases, the VoI can only be known
after the task is completed. Here we revisit the two examples
of semantic-aware communications in [123], [124]. The VoI
of SI in the federated DRL task with multiple heterogeneous
agents [123] is the reduction in convergence time as well
as the increase of the long-term reward after convergence.
Moreover, the VoI of SI in URLLC-enabled UAV swarm
collaboration [124] is an improvement in convergence rate and
reduction of inter-UAV collision probability. Therefore, for a
general task, the VoI is challenging to be quantified as the AoI
before communications, because the VoI is largely determined
by a combination of multiple factors in the communication
context. Therefore, the available VoI-based metrics are scarce,
and the VoI-based scheduling or resource allocation scheme
only performs for simple tasks, such as abnormality monitor-
ing.

D. Combined semantic metrics
As aforementioned, the above three types of semantic met-

rics only focus on one attribute of the information conveyed
by the recovered data. To address this limitation, burgeoning
research efforts have been investigating new semantic metrics
that combine multiple attributes to varying degrees [166].

The authors in [167] integrate AoI into error-based metrics,
and propose a new metric named age of incorrect information
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Fig. 13: Comparison of AoI and AoII, where Xt denotes
the transmitted information, and X̂t denotes the estimated
information inferred from the transmission [167].

(AoII). AoII characterizes the impact of the prolongation of
one inaccurate state on semantic recovering. Compared to both
error-based and AoI-based metrics above, AoII is incorporated
with more meaningful semantics by jointly considering the
content and timeliness. Specifically, AoII considers not only
the repercussions of a transient state on the overall communi-
cation goal, but also the repercussions of the states lasting
for different duration. For instance, the repercussions of a
long burst of error are far more severe than an instantaneous
burst of error for video transmission [173]. The comparison
of the AoI and AoII is shown in Fig. 13. Meanwhile, the
authors in [174] integrate VoI into the AoI-based metrics by
considering a pull-based system and propose a new metric
called age of information at query (QAoI), which reflects the
freshness of the instants when the receiver actually needs the
data [166]. In a pull-based system, the information is effective
at the receiver only at certain query instants. In this sense,
the communication is expected to be query-driven, that is,
the transmitter knows the query instants and optimizes the
transmissions with respect to the timing of the query process.
Hence, the query-driven QAoI-based on scheduling scheme is
more efficient and effective for such a system than the query-
blind AoI-based one to achieve sending just before the query
instants. As shown in Fig. 14, the QAoI-based scheme is more
likely to provide updates that are fresh when a query arrives,
although its average AoI may be worse than the AoI-based
scheme [174].

E. Lessons learned summary

1) Lessons learned for error-based semantic metrics: As
discussed in Section V-A, the research on error-based perfor-
mance evaluation methods is just beginning and is lagging
behind research on SE and SI transmission. Compared to the
metrics, such as BER, and SER, used in traditional com-
munications to quantify transmission accuracy, the semantic
error metrics summarized in Table VII avoid the shallow bit-
by-bit, symbol-by-symbol rigid comparison. When comparing
the difference between the received signal and the transmitted
signal, these semantic metrics further take into account the
characteristics of the data type itself, such as the syntactic
structure of the text or the positive impact of the short memory
in human perception on speech signal intelligibility. However,
most of the above metrics are still comparing the raw signals

  

 

to age, such as Query-AoI (QAoI) [7] and Age of 
Incorrect Information (AoII) [8]. 

 
AoI is a composite measure that depends on 
both the sampling pattern used to generate 
data from the source signal, and the delay these 
samples encounter during their transmission 
through the network. Hence, this measure goes 
against state-of-the-art network design 
principles that handle these aspects separately. 
Standard transport protocols (e.g.,TCP and UDP) 
do not explicitly support freshness, which can 
lead to extreme inefficiency [9].   
 
The current 5G Ultra-Reliable Low-Latency 
Communication (URLLC) paradigm mandates a 
departure from utility-based network design 
that relies on average quantities, to deliver strict 
guarantees on latency, defined as the delay from 
the transmission of a data packet to its 
successful decoding at the receiver. However, 
controlling latency is not sufficient: many 
machine-type applications require freshness, 
which can be measured by the Peak AoI (PAoI). 
Consider the MQTT transport protocol widely 
used in industrial applications: Even if the 3GPP 
release-16 URLLC goal of 0.5-1.0 ms one-way 
latency with 99.9999 percent transmission 
reliability is met, this does not guarantee 
freshness: e.g., with a random sampling period 
of 1 ms, PAoI will reach 2 ms. Lowering the PAoI 
to 1.1 ms would require the sampling period to 
be lowered to 0.1 ms, whereby the sampling rate 
is tailored to the latency provided by the network. 
Noticing this distinction between latency and 
freshness is critical in networked control 
systems (NCSs), considering the smart 
manufacturing market, expected to grow to €0.9 

trillion by 2030, to which wireless connections 
will contribute 72% [10]. 

 
RELEVANCE 

Consider measurements of a process sent to a 
monitor for remote estimation or tracking, over 
a channel with random delay. A dramatic 
example for the sub-optimality of separate 
handling of sampling and transmission is the 
several-fold increase in reconstruction error 
suffered by state-of-the-art uniform sampling as 
opposed to age-aware sampling (Fig.3, red 
curve). A more advanced semantic criterion for 
sampling (beyond age) is the amount of change 
in the process since the previous sample, which 
measures the relevance of this sample for the 
computation at the monitor. Process-aware non-
uniform sampling can match the MSE achieved 
by uniform sampling by sending only a fraction 
of the samples (Fig.3, blue curve). Therefore, 
rethinking sampling is crucial to future system 
designs, especially those involving low-power 
devices. Recently, the semantic-aware sampling 
problem has revealed connections [11] with the 
concepts of Rényi entropy, Gallager’s reliability 
function, and anytime capacity. 

 
VALUE 

The semantic attribute, relevance, defined 
above considers not only the aging of the source 
sample but also the change in the source output. 
Yet, this may be insufficient for certain NCSs 
that require a more advanced metric that, in 
addition to the changes in the source output, 
takes into account the value of the next source 
sample to the point of computation. The Value of 
Information (VoI) can be quantified as the 
difference between the benefit of having this 
sample and the cost of its transmission. 

Fig. 3. [3] Estimation error with respect to maximum 
allowed sampling rate, when packets are subject to 
IID unit mean exponentially distributed delay in the 
channel. MMSE-optimal and age-aware sampling can 
be arbitrarily better than uniform sampling, which 
sets the sample rate to fmax. 

Fig. 2 Time evolution of age, ∆(t), for two different 
transmission strategies: one that tries to minimize 
time average age (blue curve), and one that 
minimizes age at query instants [7]. 

Fig. 14: AoI dynamics of the PQ and QAPA policies, where
PQ denotes a permanent query system, which minimizes the
traditional AoI, and QAPA denotes a query arrival process
aware system, which minimizes the QAoI [166], [174]

sent and recovered, albeit from a more personalized and
specialized perspective, rather than a direct comparison of the
SI those imply. An ideal semantic metric might be similar
to sentence similarity proposed in [38] and [139], and also
implies an inevitable consumption of computational resources
and time for the pre-training process of the relied AI model.

More significantly, it is important to point out that all
the existing semantic metrics are intrusive, which involves
a reference signal to accomplish the performance evaluation.
Since a clean reference signal is always unavailable in real-
world communications, these metrics can only play a role in
the training phase of SE models based on existing databases.
Meanwhile, as discussed in Section III-B and Section V-A1,
the non-differentiable, complex form of these metrics makes
the training process more challenging. Hence, the practicality
of these metrics is limited. Moreover, a non-intrusive semantic
measurement for real-world testing, which can blindly and
intelligently estimate the objective scores, such as BLEU, and
PESQ, remains to be studied.

2) Lessons learned for combined semantic metrics: When
conducting performance evaluation based on the three types
of metrics in Fig. 11, the data is given different impor-
tance. Since the error-based type of semantic metrics aims
at comparing the meaning conveyed by the transmitted and
recovered messages, it can be treated as the metric designed
for semantic-oriented communication. In contrast, VoI-based
metric type goes beyond the accuracy comparison from the
semantic level, and instead directly evaluates the relevance
of the information to task performance from the effectiveness
level. In this sense, VoI-based metrics are for goal-oriented
communications. Moreover, the AoI-based metrics fall be-
tween the error-based metrics and VoI-based metrics, as both
the meaning of the message and its impact on task execution
may change over time. Combining AoI-based metrics with
error-based metrics, the relevance of information can be further
differentiated in terms of the time dimension. In an ideal
SemCom system, the combined metrics are expected to play
a role in resource allocation to guide the filtering of irrelevant
information and enhance system efficiency and performance.
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However, this idea has only been explored in the simplest pull-
based system, and the reason is that the quantification of SI has
not been achieved, and the most error-based metrics and VoI-
based metrics are challenging to estimate before transmission.

VI. SEMCOM FOR FUTURE 6G INTERNET

In this section, we first discuss some potential applications
for SemCom in 6G. Then, we motivate a promising SemCom-
empowered network architecture in 6G.

A. Potential applications for SemCom in 6G

1) Intelligent transport system: In recent years, with the
development of hardware in vehicles and vehicular infrastruc-
tures, vehicles can be considered as intelligent agents with
greater computing, caching and data storage capacities [175],
[176]. This paves the way for future 6G intelligent transport
systems (ITS), wherein autonomous driving and cooperative
vehicle networks can be achieved without the need for human
involvement [177]. In most of the existing works, in order to
enhance safety, improve assisted driving decisions, or manage
vehicles, the basic information about the vehicles and road,
such as locations, braking intensity, potholes, and water pud-
dles, is required to be broadcast periodically [37]. Such a non-
differentiated vehicle communication for different situations
can affect communication effectiveness and efficiency. To
this end, SemCom has a great potential to make ITS more
intelligent.

In ITS, the most straightforward application of SemCom
is to extract the essential semantic information from the
raw sensor data, such as vehicle kinematic information, road
conditions, and traffic signs (as shown in Fig. 4). For instance,
there are many situations, such as a sudden appearance of a
human and a sudden collision happening in front of a vehicle,
that have a similar effect on vehicle driving. Therefore, by
extracting the SI of a particular situation (i.e., quantifying
the impact of each situation on driving), the accuracy and
timeliness of the transmission can be greatly improved because
of the reduced amount of data. In addition to the compression
of the data itself, as discussed in Section V-B, the time
point of data sampling is also critical in SE. For example,
when a vehicle has a sufficiently long visibility range or
sufficient viewing duration along every direction, it can make
the driving decision based on its own local. In this case,
the driving information about other vehicles is not required
to be exchanged frequently. In contrast, if a vehicle’s visible
duration is very short, then when the vehicle gets the vision, it
may not have sufficient information or time to make a correct
reaction. In such a case, information exchange needs to be
more timely. More specifically, the essential information about
safety, such as braking intensity, should be given a higher
priority [178]. Moreover, as discussed in Section II-B3, to
monitor the traffic flow of walled subdivision, the SI about
a continuous view over the subdivision exit can be shared
with the vehicles about to pass the subdivision. To this end,
determining when to communicate, and what information to
share in a “quantitative” manner is exactly what SemCom is
required to do.

2) Distributed learning based applications: With increased
computing power on end devices and growing privacy con-
cerns of users, distributed learning, such as federated learning
(FL) has become a dominant paradigm for privacy-preserving
machine learning [179]. It has penetrated all aspects of hu-
man’s lives [180], such as medical diagnosis, cyberattack
detection, and BS association. As deep neural networks usually
contain millions of weight parameters, the frequent exchanges
of DNN models or gradients between terminals and servers in-
cur costly communication overheads, which poses challenges
for communication networks, especially for the uncertain
wireless environment and limited wireless resources.

Fortunately, SemCom can reduce unnecessary communica-
tion overhead in two ways, thereby improving performance
within limited wireless resources. Firstly, the model param-
eters and gradients can be compressed in a semantic-aware
manner, such as gradient sparsification [181] and model pa-
rameter pruning [182], where a subset of the original model
parameters is extracted considering the semantics or impor-
tance of the parameters for model accuracy and convergence
speed. For example, in [181], gradient sparsification is adopted
to compress the model at the transmitter by setting all but
k elements with the highest magnitudes of entries to zero.
Since only the positions of the non-zero elements are to be
sent, the receiver can recover the received data in a more
reliable manner with advanced noisy measurements. Secondly,
as per the two examples of semantic-aware communication
in Section III-E, the agents in distributed learning can ex-
change their own semantic features via SemCom to enhance
their knowledge of each other. The semantic features can be
extracted from their learning models [123], their observable
environments [124], their missions, and so on. Based on the
semantic features of small data volume, an optimal subset
of semantically-related agents for collaboration can be found.
Therefore, the exchange of models with large data volumes
between irrelevant agents can be effectively reduced.

3) Unmanned aerial vehicles: UAVs have attracted lots of
attention especially while being served as aerial base stations
(BSs) or as relays [183]–[185]. Unlike static ground BSs or
relays, UAVs can be flexibly deployed to satisfy various QoS
requirements and balance load amongst users. Moreover, UAV
swarms collaboratively can complete missions with greater
efficiency and economy as compared to single UAV systems.
However, the energy constraints of UAVs impede their ability
to facilitate long-term communication. Meanwhile, the colli-
sion problems in UAV swarm navigation have also been a key
concern in the studies of UAV networks.

Fortunately, because SemCom can reduce the amount of
information that needs to be transmitted, an efficient commu-
nication framework among UAVs can be implemented. For
example, when the UAVs are being served as relays, diversity
gain can be achieved with the help of cooperative commu-
nication protocols, such as decode-and-forward and amplify-
and-forward [186]. In this sense, a novel semantic process-
and-forward method is motivated to be proposed to cater to
SemCom. In addition to the traditional relay function, the UAV
can be deployed as a semantic encoder and/or decoder. For
example, when one of the sending and receiving parties cannot
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enable SemCom due to insufficient memory or computing
power, UAV can carry out encoding or decoding instead to
reduce the data volume of a certain link without compromis-
ing communication performance. Certainly, this requires the
UAV to know the background knowledge of both sides of
the communication. This also poses new challenges for the
joint optimization of communication, computing, and caching
resources. Moreover, in the case where both parties can enable
SemCom, the UAV can perform the semantic decoding for
the received signal based on the background knowledge of
the transmitter, and then it can re-code the signal based
on the background knowledge of the receiver. This greatly
reduces the overhead of synchronizing background knowledge
for sending and receiving and the semantic noise caused
by unsynchronized background knowledge [187]. Moreover,
as discussed in Section III-E, SemCom can also play an
essential role in UAV swarm navigation. As shown in [124],
by introducing SemCom, the UAV swarm navigation based
on graph attention exchange network can achieve 6.5x lower
latency with the target 10−7 error rate compared to the state-
of-the-art CTDE based method.

4) Extended reality: Advances in 6G network technologies
provide technical support for next-generation Internet services.
In particular, the possibility of synchronization of the physical
and virtual world through extended reality (XR) has led to the
birth of Metaverse, which has been dubbed as the successor
to the Internet. The performance of XR is heavily dependent
on the collection and processing of data that reflects or
describes human movements and changes of surroundings,
e.g., shifting rendered targets, displaying particular videos,
and giving the corresponding tactile feedback. To guarantee
the ideal immersive Metaverse service experience for users,
the end-to-end latency and data rates requirements have to be
strictly met [188], [189].

To this end, SemCom can be seen as an enabler for XR-
based Metaverse access [190]. In the SemCom paradigm, the
data tracked by the end devices, such as head movement,
arm swing, gestures, and speeches, need to be extracted
semantically first. This allows the end device to transmit the
information concerned by the XR server for operation after
understanding and filtering out the irrelevant information to
save bandwidth and reduce computing latency at the XR
server. Meanwhile, the XR server can also extract SI based
on the user’s preference, ignoring irrelevant details in the face
of bandwidth constraints, thus reducing downlink pressure.

5) Holographic telepresence (HT): As another technique
to deliver next-generation services to users, holographic telep-
resence (HT) can project realistic, full-motion, real-time three-
dimensional (3D) images of distant human beings or physical
objects with a high level of realism rivaling of the physical
presence [177][191]. It can be applied not only to virtual
conferencing, virtual games, and the realm of entertainment,
but also to remote repair, and remote surgery [177][192].
However, like the immersive XR application, to ensure a
real-enough virtual and seamless service experience, HT also
requires stringent QoS. Moreover, almost all the human senses,
such as smell and taste, are expected to be transmitted through
future networks for a fully immersive experience.

For such communication-and-computation intensive ser-
vices, the traditional content-blind communication paradigm
results in a waste of bandwidth resources and computing
resources. To this end, the understanding-before-transmission
paradigm of SemCom can be regarded as a promising method
to alleviate the pressure of bandwidth and the receiver’s
end processing. This is attributable to the fact that SemCom
allows the SI extraction that is adaptive to network conditions
and enhances transmission reliability, so that changes in the
network conditions cannot be perceived by users, thus ensuring
high quality service experience.

6) Personalized body area networks: Personal data man-
agement as well as transmission of wearable devices are future
trends that will affect how personal services and procedures
develop. An important element is the wireless body area
network (WBAN). Defined formally by the IEEE 802.15 (Task
group 6) as a communication standard optimized for low-
power devices, the WBAN can serve a variety of applica-
tions such as medical, consumer electronics, and personal
entertainment [191]. Because of the energy constrained power
supplies of tiny sensor nodes, effective energy consump-
tion is a key challenge in WBAN. SemCom prompts us
to think about whether we can save energy and increase
the lifetime of wearable devices by reducing the number of
actual bits transmitted. In WBAN, it has been shown that
the on-board extraction of features on modern low-power
wearables is both feasible and beneficial for system lifetime
improvement [192]. Although a resource-constrained sensing
system needs to strike the balance between the accuracy of
the semantic features output and the cost of analyzing the data
for extraction, the benefits from reducing the radio duty cycle
which is used for transmission, vastly outweigh the cost of
increasing the processor duty cycle which is used for semantic
features extraction [193]. As knowledge extraction from the
raw data can significantly reduce the information that needs
to be transmitted, the SemCom-based method increases the
lifetime of the wearable device by one order of magnitude,
at the cost of approximately 5% degradation of classification
accuracy [193]. The development of SemCom and the deeper
integration with WBAN will give rise to longer-lasting and
more convenient wearable devices.

7) Collaborative robots: A group of cooperative robots can
explore, interact with, and perceive the environments far more
efficiently than a single robot working alone [194]. In scenar-
ios such as disaster management, warehouse automation, and
surveillance, the application of collaborative robots is rapidly
increasing. However, the limited computation capability of
each robot limits the widespread deployment in computation
intensive tasks [195]. One promising solution is to apply
the SemCom techniques to achieve efficient data exchanging
and processing. SEMIoTICS, a new SemCom-based control
system architecture is proposed in [196], which enables the
utilization of logic-based reasoning over declarative language
models to reduce the decision-making time. In [196], SEMI-
oTICS is deployed in a building that consists of 15 IoT com-
ponents for temperature regulation control. The results show
that the overall control processing time can be maintained
in 6 minutes, which is only 24% of that of the traditional
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Fig. 15: Semantic communication-empowered 6G architecture [20].

fuzzy logic control-based method [197]. To further reduce the
communication overhead among collaborative robots, a lite
distributed SemCom system, named L-DeepSC [75], can be
used. When the communication environment among collab-
orative robots experiences low SNR, L-DeepSC can enable
efficient information exchange. In particular, with L-DeepSC,
the amount of data needed to interact among robots can be
compressed to 2.5% of the information that is needed by the
traditional method.

8) Hyper-intelligent IoT: Hyper-Intelligence (HI) refers to
higher- and super-intelligent abilities to accomplish complex
tasks. The combination of HI and IoT will lead to a smarter
and data-driven society [198], [199]. A general and reasonably
predictable trend in the next few years will be a rise in the
native intelligence of networks, network nodes, and linked
devices. Devices that are formerly utilized merely as sense-
and-transmit entities will be endowed with various levels of
embedded intelligence that operate directly on the data ac-
quired. The necessity for progressively smarter communication
parties opens the door to the creation of “smarter” content
to exchange and reason, as well as innovative methods for
ensuring that it is done effectively and accurately [200], which
coincides with the booming development of SemCom. With
the help of SemCom, only the most useful data is transmitted,
and therefore the communication effort is optimized. To deploy
the SemCom techniques in HT IoT to promote efficiency, a
potential solution would be to consider whatever enables the
receiver to effectively execute a given task, while relying on
SemCom that extracts only the necessary information from
the data. By giving HI the ability to process and reason
information at the semantic and even effective level, the HI
IoT will be more connected, further advancing the construction
of an interlinked and connected society.

B. SemCom-empowered 6G architecture

In the traditional communication network, the network
nodes are not concerned with what the data is trying to convey.
The information exchanged between the inter-and intra-layer
nodes in the network can be generally seen as homogeneous bit
sequences. However, in the SemCom architecture with ubiqui-
tous consciousness, the information representation can achieve
a higher level. In line with the concept of “Bit” in Shannon’s
information theory, the authors in [20] introduce a new concept
called “Seb” for SI. A SemCom system dimensioned by Seb
is highly modulated compared to traditional communication
systems.

In analogy to the construction process, a bit-flow-based
network architecture is like a building constructed in a brick-
by-brick manner, while a Seb-flow-based network architecture
is similar to the building constructed by the laminboard
and integrated window or door [20]. As the integration of
raw materials simplifies the construction process, the SE of
raw data also calls for a simplified network architecture to
efficiently support SemCom.

To this end, the authors in [20] propose a novel intelli-
gent and efficient SemCom (IE-SC) architecture, as shown
in Fig. 15. In contrast to the well-known seven-layer open
systems interconnection (OSI) model, their proposed IE-SC ar-
chitecture divides the network into three semantic-empowered
layers: semantic application-intent (S-AI) layer, semantic
network-protocol (S-NP) layer, and semantic physical-bearing
(S-PB) layer. Meanwhile, the three layers, as well as the
physical environment, are coordinated by a separated semantic
intelligence plane via the semantic information flow (S-IF). In
the following, we first introduce the three main functions of
the semantic intelligence plane. Then, we present the other
three layers with examples in detail.

1) Semantic intelligence plane: As a coordinator of the
entire IE-SC network, the semantic intelligence plane contains
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three main functions:

• Semantic environment representation: This function
deals with the extraction of SI from the raw data and
communication context based on the semantic intent
information provided by the S-AI layer, which is detailed
in Section VI-B2. Meanwhile, the semantic intelligence
plane generates the semantic extraction components, such
as SemCom protocol design and semantic encoding and
decoding, and maps them to the functions of each layer.
Meanwhile, SI is embedded into the S-IF to be transferred
in the network through the semantic intelligence plane
and the interfaces of different layers.

• Background knowledge management: Just as human
communication requires knowledge of each other’s lan-
guage and culture, SemCom requires that both commu-
nicating parties have the same background knowledge,
which lays the foundation of the intent analysis of the
S-AI layer. The semantic intelligence plane serves as a
coordinator, which performs the synchronization, integra-
tion, and storage of background knowledge.

• Semantic decision and deduction: The semantic in-
telligence plane is also responsible for evaluating the
achievable performance according to the results of the
intent analysis fed by the S-AI layer and performing
decision-making for all network layers.

2) Semantic application-intent layer: In the traditional OSI
model, the application layer mainly allows users to download
data from storage or dataset, or send data to a destination
regardless of what and how the data is used. In contrast, the
S-AI layer adds the function of intent analysis for a particular
communication. It can support decomposing and translating
the users’ intent into the network’s deployment, configuration,
or control policies. The three main functions within the S-AI
layer are highlighted below.

• Intent mining: The S-AI layer is responsible for extract-
ing, analyzing, aggregating, and synthesizing the original
intents received from users or applications. For example,
for an image, some requesters may use it for target
identification, some may be concerned with local details,
and some may be interested only in image quality. Dif-
ferent intents may correspond to different communication
processes.

• Intent decomposition: In order to facilitate the sub-
sequent SE from raw data, the obtained intent after
intent mining is decomposed into a set of sub-intents,
which may be the attention of the requester to different
paragraphs, sentences, words in a text, or the importance
of different features of an image. Moreover, recall an ap-
plication in ITS, the intent of which is to provide vehicles
that are about to pass through a walled subdivision with
information about the traffic flow of the subdivision exit.
During the intent decomposition, the sub-intents can be
a series of continuous views of the subdivision exit. For
guiding the implementation of the entire communication
process, the sub-intents can be informed to the S-NP layer
and S-PB layer and used to design protocols and SE,
respectively.

• Semantic representation: After obtaining the sub-intent
set, the S-AI layer gives the semantic representation of
the sub-intents. The semantic representation is passed to
the semantic intelligence plane, facilitating SE.

3) Semantic network-protocol layer: The S-NP layer aims
to efficiently serve the intents of upper-layer applications
with intelligent network protocols. The design of this layer
mainly concentrates on the strategies of semantic interaction,
which includes experience accumulation for learning (e.g.,
multiple rounds of dialogues), real-time knowledge sharing,
and simplified semantic interaction. In this sense, some key
modules should be included in the S-NP layer:

• SI computation: In traditional communication, most
protocols mainly focus on the destination address and
port, and ignore the content of the data. However, in the
SemCom-enabled network architecture, if the intermedi-
ate forwarding nodes still treat all data equally, it would
compromise the analytical significance of the application.
To this end, this module is for identifying the intent
information on the S-IF and obtaining knowledge from
other modules.

• Semantic protocol parsing: This module is used to
analyze the functions available for the existing protocol.

• Semantic protocol formation: This module is responsi-
ble for optimizing the existing protocol or forming a new
one to adapt to the intent of the application.

• SI conversion: In the traditional network architecture, the
protocols of the different network layers have individ-
ual frame encapsulation, packet encapsulation, segment
encapsulation, etc. Similarly, in SemCom-enabled proto-
cols, SI needs to be encapsulated separately. This module
is responsible for completing the SI encapsulation based
on the generated protocol.

Take the immersive AR application as an example, which
is the application with the coexistence of video, audio, and
haptic data and requires high bandwidth and ultra-reliable
low latency. Suppose that by interacting with the semantic
intelligent plane, the S-NP layer can map the sub-intents,
such as the attention to different sound sources and different
objects in the visual field, as well as the haptic data with
highly critical latency requirements, to the data within the S-
IF. For the haptic packets, the traditional design of the medium
access control frame usually reserves dedicated resources for
ensuring that the delay QoS requirement is met. However, the
request of the haptic packets is random and intermittent, which
inevitably leads to low resource utilization or transmission
failures. In order to address the above issues, a semantic
protocol should be designed to coordinate the transmission of
the data corresponding to different sub-intents. For example,
due to the tightest time delay requirement, the haptic data are
given the highest priority when being forwarded. Moreover,
when the network is under heavy load, the redundant data
with less attention from the user can be detected and removed
adaptively, and resources can be freed for delay-sensitive
traffic [154].

4) Semantic physical-bearing layer: The S-PB layer is re-
sponsible for converting SI from the upper layers into physical
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signals. Different from conventional communication, SemCom
aims to deliver SI instead of raw data, so the traditional source
encoding/decoding and channel encoding/decoding are to be
replaced. Three possible types of semantic-related modules
employed in the S-PB layer are listed below:

• Semantic encoding/decoding: Following the modular
design method, the modules of semantic encoding and
decoding are designed separately from other modules,
such as channel coding. For example, as presented in
Section III-C, the authors in [109] propose a pair of
semantic encoder and decoder based on a well-established
KB. Meanwhile, the channel encoder and decoder are still
performed in the same way as in traditional communica-
tions.

• Semantic encoding/decoding based on channel infor-
mation: Integrate the channel information in terms of
fading, SNR, and interference into semantic encoding
and decoding. As discussed in Section III-A, in [67], the
authors apply SNR to SE by introducing the attention
module, which allows the SE method to be adaptive to
the changes in channel gain.

• Semantic-aware joint source-channel encod-
ing/decoding: Following the integrated design method,
channel encoding and decoding can be jointly integrated
into the modules of semantic encoding/decoding. In fact,
most of the existing end-to-end SE methods [38], [65],
[81] discussed in Section III-A and Section III-B belong
to the type of semantic-aware joint source-channel
encoding/decoding.

VII. FUTURE DIRECTIONS

In the previous sections, we review the potential SemCom
applications in 6G and the state-of-the-art techniques applied
in SemCom. In addition to the remaining issues discussed
in Section III–V, several other SemCom-related directions
can be explored further in terms of system effectiveness,
sustainability, and trustworthiness.

A. Interpretability and explainability of SE

The communication environment is always experiencing a
variety of uncertainties, such as unexpected changes in the
network environment or completely new source information.
The black box nature makes the SE model unpredictable for
the output corresponding to uncertain inputs in practice, which
restricts the SE model’s social acceptance and practicality, as
well as leaves little basis to use as a guide for SE model
optimization. Meanwhile, the available SE models are with
little or no understanding of how and why the internal states
in the hidden layers and the features contribute to a given
example to produce a decision or outcome [201], which fails
to give valuable insights into the design of SemCom systems
and the SI transmission. Therefore, the issues related to
interpretability and explainability of SE have to be addressed.

As defined in [202], interpretability is used to measure the
degree to which a human can consistently predict the model’s
decisions. Gaining an insight into how and why the SE model
arrives at a particular decision or outcome not only builds

confidence in the model to deal with unknown situations,
thereby reducing the risk of uncertainty, but also helps to
understand the overall strengths and weaknesses of the models
and guides improvements to the model [203]. In contrast to
interpretability, the study of explainable AI focuses on the
hidden states in DNN and aims to open up the black box. For
example, the contribution of each input semantic feature to
the accuracy of the semantic inference can be quantified by
analyzing the gradient information of the semantic decoder.
Based on this, the radio resource allocation at the sender can
be achieved with a more flexible and fine-grained implemen-
tation, such as allocating the crucial semantic feature higher
transmitting power to ensure its transmission reliability and
the accuracy of the semantic inference.

B. Tradeoff between SE accuracy and communication over-
head

Most of the existing works focus on how to perform accurate
SE to save radio resources and enhance communication perfor-
mance, while ignoring the extra communication overhead for
SE. In fact, SE model training and updating require significant
additional resources. For example, the training of accurate
semantic extraction models relies on a complete KB with both
senders and receivers, which requires, first of all, adequate
storage resources. In addition, as the communication context
evolves, each user’s local KB is constantly being updated
individually. In this sense, ensuring that updates to the local
database of all communicating participants can be shared in
real time is extremely challenging, especially for the case with
a large number of participating users who are geographically
distant, which can cause significant communication overhead.
Moreover, in an ideal case, retraining or fine-tuning of the
SE model needs to be done promptly after the KB update.
However, this is unrealistic for practical systems with limited
computational resources. Therefore, making a favorable trade-
off between SE accuracy and communication overhand is
essential for the implementation of SemCom.

For example, we can utilize edge intelligence to train the
SE model based on the shared KB of local senders and
receivers stored in the MEC server of the local area first.
Then, with the help of the distributed learning paradigms,
such as federated learning, a generalized SE model can be
obtained by aggregating multiple well-trained SE models for
different geographical areas. In this way, storage resources
scattered around the edge can be efficiently utilized to reduce
storage pressure on end devices or the central cloud, and the
communication overhead caused by sharing data over long
distances can be greatly reduced. However, the reasonable
division of geographical areas and the strategic deployment of
edge servers are still to be explored. Moreover, the aggregation
period and the participants selected in each round are also the
essential issues that can be optimized in making a tradeoff
between SE accuracy and communication overhead.

C. Combination of SemCom and semantic caching

In traditional communications, the implementation of data
caching on the router, MEC server, base station, etc., has
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already shown to be of great benefit in avoiding unnecessary
delay and network overhead for [204]. By joint optimizing
caching and communication, with a 1% increase in cache
hits, the perceived latency is reduced by 35% [205]. However,
traditional caching in terms of raw data is no longer ideally
suitable for SemCom systems, as the frequent and repetitive
semantic extraction of the raw data results in redundancy and
inefficiency of the system. Meanwhile, the data volume of
SI extracted is much smaller compared to the raw data. In
this sense, semantic caching strategies that fit with SemCom
cannot only enhance system efficiency, but also save memory
resources.

However, there are new issues raised for semantic caching.
For example, different from the traditional data caching, such
as that mainly focuses on the hit rate of the data content,
semantic caching is more concerned with whether the SI in the
cache can be accurately inferred by the requester. Since there
may be multiple SI for the same data content, which ones to
cache demands more prior knowledge, such as the popularity
of the specific SI. Moreover, as the context of SemCom is
constantly changing, the lifetime of SI is more difficult to
determine. To this end, it also requires new estimate refreshing
algorithms for semantic caching.

D. Reasoning in implicit SemCom

The majority of previous SemCom research focused on
transferring explicit SI, such as the labels of things that can be
directly identified from the source signals, e.g., images, voices,
and texts. However, communication between users is not only
limited to explicit information, but also contains rich implicit
information that is difficult to express, recognize, or recover.
For example in [206], a kid sends her father a voice message
asking, “What is a Tweety?” The major semantic part of this
message, “Tweety”, might be interpreted in several ways, such
as a smartphone app, a canary bird, or a character from a
cartoon television program. Therefore, to deduce the message’s
exact meaning, the receiver must be able to infer the implicit
information from the transmitter’s context and background.
Thus, it is unrealistic to assume that the destination user has a
well-defined analytical expression, such as a reward function
or utility function, which is directly optimized to maximize its
understanding of the semantic meaning.

A few works have considered this point and tried to propose
solutions. A generative adversarial imitation learning-based
reasoning mechanism learning (GAML) is designed in [206]
for the destination user to learn and imitate the reasoning
process of the source user to obtain the implicit semantic
meaning. It is shown that GAML can achieve significant error
correction performance and offer 20% of accuracy improve-
ment over genetic algorithm (GA)-based reasoning solution.
In another work [207], the authors develop a novel inference
function-based approach that can infer hidden information
such as incomplete entities and relations that cannot be directly
observed from the message, where the solution achieves 76%
and 48% of accuracy in recovering missing information when
using additive and linear inference functions, respectively.
However, both solutions in [206], [207] add additional in-

ference overhead, and there is still room for further perfor-
mance enhancement. Moreover, because explicit SI is typically
dominant, the communication resources should be allocated
proportionally between explicit and implicit SI, which inspires
us to further design the joint optimization algorithms.

E. Artificial intelligence in SemCom channel management

In SemCom, AI is more often deployed on the transmitter
and receiver for coding and decoding to serve upper-layer
applications. However, in the 6G wireless communication
that has a higher data rate and more frequent handover,
channel modeling becomes more and more complex than the
traditional stochastic or deterministic approaches [208]. This
prompted us to think about whether AI could be brought
down to the SemCom channel layer to help model, estimate,
and change channel conditions. Unlike simply applying AI to
the end-to-end SemCom model training, the development of
new intelligent materials gives AI more freedom in wireless
channels [209]. It is believed that the radio environment in
the future generation of wireless communication networks
will become controllable and intelligent by leveraging the
emerging technologies of reconfigurable metasurface (RMS)
and AI [210]. RMS can effectively control the wavefront,
e.g., the phase, amplitude, frequency, and even polarization,
of the impinging signals. Through the use of AI-enable
programmable intelligent materials, SemCom networks can
further surpass the limits predicted by the classical Shannon
theory by jointly optimizing the transmitter, the receiver, and
the environment.

F. Tradeoff between SemCom performance and security

Data security and privacy issues are always significant topics
in the field of wireless communications [211]. Due to the
fact that SemCom requires only partial data to be transmitted
and the decoding of SI relies on the receiver’s background
knowledge, it has also been regarded as a potential method
for secure communications [30]. In addition, the security of
the data can be further enhanced by encrypting the extracted
SI. However, this also leads us to consider the tradeoff between
computational resource overhead and data security. One pos-
sible solution is to use physical layer security technologies.
Considering the success of covert communication [212], we
can make the data eavesdropper unsure whether the SemCom
is ongoing by introduced interference to the physical layer
for secure wireless transmission. However, although the com-
putational resources for encrypting the data are reduced, we
need to keep the transmitting power not too high to ensure the
covertness of the communication. In addition, the interference
signals have a negative impact on the transmission of SI, which
brings a trade-off between covertness and signal quality.

VIII. CONCLUSION

In this paper, we have provided a comprehensive survey of
SemCom for 6G. First, we have highlighted the mutually re-
inforcing properties of 6G and SemCom. Then, we introduced
the development from SemCom-related theories and identified
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three types of SemCom. Next, we organized the design of the
communication system into three dimensions of SI extraction,
SI transmission, and SI metrics, and discussed the state-of-
the-art techniques and challenges, respectively. Meanwhile, we
have presented the potential applications of SemCom in the
6G network as well as the promising SemCom-empowered
network architecture. Moreover, we highlight some future
directions with insights for further in-depth investigations.
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[181] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading
channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–
3557, 2020.

[182] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning on
edge devices,” arXiv preprint arXiv:1909.12326, 2019.

[183] S. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on unmanned aerial
vehicle networks for civil applications: A communications viewpoint,”
IEEE Commun. Surv. Tutor., vol. 18, no. 4, pp. 2624–2661, Apr. 2016.

[184] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for IoT applications: A
learning-based approach,” IEEE J. Sel. Areas Commun., vol. 37, no. 5,
pp. 1117–1129, May 2019.

[185] C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen,
“Deep reinforcement learning for delay-oriented iot task scheduling in
SAGIN,” IEEE Trans. Wirel. Commun., vol. 20, no. 2, pp. 911–925,
Feb. 2020.

[186] J. N. Laneman, D. N. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: Efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[187] X. Luo, Z. Chen, B. Xia, and J. Wang, “Autoencoder-based se-
mantic communication systems with relay channels,” arXiv preprint
arXiv:2111.10083, 2021.

[188] H. Du, J. Wang, D. Niyato, J. Kang, Z. Xiong, D. I. Kim et al.,
“Exploring attention-aware network resource allocation for customized
metaverse services,” arXiv preprint arXiv:2208.00369, 2022.

[189] Y.-J. Liu, H. Du, D. Niyato, G. Feng, J. Kang, and Z. Xiong, “Slic-
ing4Meta: An intelligent integration framework with multi-dimensional
network resources for metaverse-as-a-service in web 3.0,” arXiv
preprint arXiv:2208.06081, 2022.

[190] L. Ismail, D. Niyato, S. Sun, D. I. Kim, M. Erol-Kantarci, and C. Miao,
“Semantic information market for the metaverse: An auction based
approach,” arXiv preprint arXiv:2204.04878, 2022.

[191] S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, and A. Jamalipour,
“Wireless body area networks: A survey,” IEEE Commun. Surv. Tutor.,
vol. 16, no. 3, pp. 1658–1686, Mar. 2014.

[192] A. Elsts, R. McConville, X. Fafoutis, N. Twomey, R. J. Piechocki,
R. Santos-Rodriguez, and I. Craddock, “On-board feature extraction
from acceleration data for activity recognition.” in EWSN, 2018, pp.
163–168.

[193] P. Zalewski, L. Marchegiani, A. Elsts, R. Piechocki, I. Craddock,
and X. Fafoutis, “From bits of data to bits of knowledge—an on-
board classification framework for wearable sensing systems,” Sensors,
vol. 20, no. 6, p. 1655, 2020.

[194] S. Bragança, E. Costa, I. Castellucci, and P. M. Arezes, “A brief
overview of the use of collaborative robots in industry 4.0: Human
role and safety,” Occup. Environ. Saf. Health, pp. 641–650, 2019.

[195] Y. Yue, C. Zhao, Z. Wu, C. Yang, Y. Wang, and D. Wang, “Collabora-
tive semantic understanding and mapping framework for autonomous
systems,” IEEE/ASME Trans. Mechatron., vol. 26, no. 2, pp. 978–989,
Feb. 2020.

[196] G. M. Milis, C. G. Panayiotou, and M. M. Polycarpou, “Semiotics:
Semantically enhanced IoT-enabled intelligent control systems,” IEEE
Internet Things J., vol. 6, no. 1, pp. 1257–1266, Jan. 2017.

[197] D. Kolokotsa, “Comparison of the performance of fuzzy controllers for
the management of the indoor environment,” Build. Environ., vol. 38,
no. 12, pp. 1439–1450, Dec. 2003.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3223224

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 23,2022 at 04:34:16 UTC from IEEE Xplore.  Restrictions apply. 



38

[198] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Trans. Industr. Inform., vol. 10, no. 4, pp. 2233–2243, Apr. 2014.

[199] J. Gao, W. Zhuang, M. Li, X. Shen, and X. Li, “MAC for machine-
type communications in industrial IoT—Part I: Protocol design and
analysis,” IEEE Internet Things J., vol. 8, no. 12, pp. 9945–9957, Aug.
2021.

[200] P. Popovski, F. Chiariotti, V. Croisfelt, A. E. Kalør, I. Leyva-Mayorga,
L. Marchegiani, S. R. Pandey, and B. Soret, “Internet of things (IoT)
connectivity in 6G: An interplay of time, space, intelligence, and
value,” arXiv preprint arXiv:2111.05811, 2021.

[201] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting
and understanding deep neural networks,” Digit. Signal Process.,
vol. 73, pp. 1–15, 2018.

[202] B. Kim, R. Khanna, and O. O. Koyejo, “Examples are not enough, learn
to criticize! criticism for interpretability,” Adv. Neural Inf. Process. Syst.
(NIPS), vol. 29, 2016.

[203] Y. Dong, H. Su, J. Zhu, and B. Zhang, “Improving interpretability
of deep neural networks with semantic information,” in Proc. IEEE
Comput. Soc. Conf. (CVPR), 2017, pp. 4306–4314.

[204] M. Sheraz, M. Ahmed, X. Hou, Y. Li, D. Jin, Z. Han, and T. Jiang,
“Artificial intelligence for wireless caching: Schemes, performance, and
challenges,” IEEE Commun. Surv. Tutor., vol. 23, no. 1, pp. 631–661,
Jan. 2020.

[205] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Cliffhanger:
Scaling performance cliffs in web memory caches,” in 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16), 2016, pp. 379–392.

[206] Y. Xiao, Y. Li, G. Shi, and H. V. Poor, “Reasoning on the air:
An implicit semantic communication architecture,” arXiv preprint
arXiv:2202.01950, 2022.

[207] J. Liang, Y. Xiao, Y. Li, G. Shi, and M. Bennis, “Life-long learn-
ing for reasoning-based semantic communication,” arXiv preprint
arXiv:2202.01952, 2022.

[208] C.-X. Wang, J. Huang, H. Wang, X. Gao, X. You, and Y. Hao, “6G
wireless channel measurements and models: Trends and challenges,”
IEEE Veh. Technol. Mag., vol. 15, no. 4, pp. 22–32, Apr. 2020.

[209] J. Hu, H. Zhang, K. Bian, Z. Han, H. V. Poor, and L. Song, “Metas-
ketch: Wireless semantic segmentation by reconfigurable intelligent
surfaces,” IEEE Trans. Wireless Commun., to apper, 2022.

[210] H. Gacanin and M. Di Renzo, “Wireless 2.0: Toward an intelligent radio
environment empowered by reconfigurable meta-surfaces and artificial
intelligence,” IEEE Veh. Technol. Mag., vol. 15, no. 4, pp. 74–82, Apr.
2020.

[211] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for
6G: Vision, enabling technologies, and applications,” IEEE Journal on
Selected Areas in Communications, vol. 40, no. 1, pp. 5–36, 2021.

[212] M. R. Bloch, “Covert communication over noisy channels: A resolv-
ability perspective,” IEEE Trans. Inf. Theory, vol. 62, no. 5, pp. 2334–
2354, May 2016.

R. Qi et al.: Martingales-Based ALOHA-Type Grant-Free Access Algorithms for Multi-Channel Networks

[13] F. Poloczek and F. Ciucu, ‘‘Service-martingales: Theory and applications
to the delay analysis of random access protocols,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Hong Kong, Apr. 2015, pp. 945–953.

[14] T. Liu, L. Sun, R. Chen, F. Shu, X. Zhou, and Z. Han, ‘‘Martingale theory-
based optimal task allocation in heterogeneous vehicular networks,’’ IEEE
Access, vol. 7, pp. 122354–122366, May 2019.

[15] Y.Hu, H. Li, Z. Chang, R. Hou, and Z. Han, ‘‘End-to-end backlog and delay
bound analysis using martingale for Internet of vehicles,’’ in Proc. IEEE
Conf. Standards Commun. Netw. (CSCN), Helsinki, Finland, Sep. 2017,
pp. 98–103.

[16] A. Goldsmith, Wireless Communications. New York, NY, USA:
Cambridge Univ. Press, 2015.

[17] G. Durisi, T. Koch, and P. Popovski, ‘‘Toward massive, ultrareliable, and
low-latency wireless communication with short packets,’’ Proc. IEEE,
vol. 104, no. 9, pp. 1711–1726, Sep. 2016.

[18] L. Zhang and Y.-C. Liang, ‘‘Average throughput analysis and optimization
in cooperative IoT networks with short packet communication,’’ IEEE
Trans. Veh. Technol., vol. 67, no. 12, pp. 11549–11562, Dec. 2018.

[19] K. Hammad, A. Moubayed, A. Shami, and S. Primak, ‘‘Analytical approx-
imation of packet delay jitter in simple queues,’’ IEEE Wireless Commun.
Lett., vol. 5, no. 6, pp. 564–567, Dec. 2016.

[20] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[21] L. Li, L. Sun, W. Kang, J. Guo, C. Han, and S. Li, ‘‘Fuzzy multilevel image
thresholding based on modified discrete grey wolf optimizer and local
information aggregation,’’ IEEE Access, vol. 4, pp. 6438–6450, Sep. 2016.

[22] Z. Zhou, R. Ratasuk, N. Mangalvedhe, and A. Ghosh, ‘‘Resource alloca-
tion for uplink grant-free ultra-reliable and low latency communications,’’
in Proc. IEEE 87th Veh. Technol. Conf. (VTC Spring), Proto, Portugal,
Jun. 2018, pp. 1–5.

RUIZHE QI was born in Jilin, China, in 1997.
She received the B.S. degree from the Depart-
ment of Communications Engineering, Xi’an Uni-
versity of Posts and Telecommunications, Xi’an,
China, in 2018. She is currently pursuing the
M.S. degree with the College of Communication
Engineering, Jilin University, Changchun, China.
Her research interests include random access
algorithms, ultrareliable and low-latency com-
munications, and delay-quality of service (QoS)
guarantees.

XUEFEN CHI received the B.Eng. degree in
applied physics from the Beijing University of
Posts and Telecommunications, Beijing, China,
in 1984, and the M.S. and Ph.D. degrees from
the Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences,
Changchun, China, in 1990 and 2003, respectively.
She was a Visiting Scholar with the Department
of Computer Science, Loughborough University,
Loughborough, U.K., in 2007, and the School of

Electronics and Computer Science, University of Southampton, Southamp-
ton, U.K., in 2015. She is currently a Professor with the Department of
Communications Engineering, Jilin University, Changchun. Her current
research interests include machine type communications, indoor visible light
communications, random access algorithms, delay-quality of service (QoS)
guarantees, and queuing theory and its applications.

LINLIN ZHAO received the B.Eng., M.S., and
Ph.D. degrees from the Department of Communi-
cations Engineering, Jilin University, Changchun,
China, in 2009, 2012, and 2017, respectively. From
2017 to 2019, she held a postdoctoral position
at the Department of Communications Engineer-
ing, Jilin University. She joined Jilin University,
in 2019. She is currently a Postdoctoral Research
Fellowwith the State Key Laboratory of Internet of
Things for Smart City, University of Macau. Her

current research interests include throughput optimal random access algo-
rithms, resource allocation schemes, and delay and reliability analysis and
optimization, especially for reliability analysis of ultrareliable low-latency
communications. She was a recipient of the Best Ph.D. Thesis Award of
Jilin University, in 2017, and acquired the Macau Young Scholars Program,
in 2019.

WANTING YANG was born in Jilin, China,
in 1996. She received the B.S. degree from the
Department of Communications Engineering, Jilin
University, Changchun, China, in 2018. She is
currently pursuing the M.S. degree with the Col-
lege of Communication Engineering, Jilin Univer-
sity. Her research interests include wireless video
transmission, ultrareliable and low-latency com-
munications, andmodeling and performance of 5G
wireless radio networks.

37620 VOLUME 8, 2020

Wanting Yang received the B.S. degree from the
Department of Communications Engineering, Jilin
University, Changchun, China, in 2018. She is cur-
rently pursuing the Ph.D. degree with the College
of Communication Engineering, Jilin University,
Changchun, China. Her research interests include
wireless video transmission, predictive resource al-
location and semantic communication for vehicu-
lar network, learning, ultra-reliable and low-latency
communications.

Hongyang Du is currently pursuing the Ph.D. de-
gree with the School of Computer Science and
Engineering, Energy Research Institute @ NTU,
Nanyang Technological University, Singapore, under
the Interdisciplinary Graduate Program. He received
the B.Sc. degree from Beijing Jiaotong University,
Beijing, China, in 2021. He was recognized as an
exemplary reviewer of the IEEE Transactions on
Communications in 2021. He was the recipient of
IEEE Daniel E. Noble Fellowship Award in 2022.
His research interests include semantic communica-

tions, reconfigurable intelligent surface, and communication theory.

Zi Qin Liew received the degree (Hons.) in elec-
tronic and electrical engineering from the Nanyang
Technological University in 2018. He is currently
a Ph.D. Candidate with Alibaba Group and the
Alibaba-NTU Joint Research Institute, Nanyang
Technological University, Singapore. His research
interests include wireless communications and in-
centive mechanisms.

Wei Yang Bryan Lim is currently Wallenberg-
NTU Presidential Postdoctoral Fellow. He received
the PhD degree in Nanyang Technological Univer-
sity (NTU), Singapore, in 2022 under the Alibaba
PhD Talent Programme, where he won the “Most
Promising Industrial Postgraduate Programme Stu-
dent” award. His works have won Best Paper Awards
including in the IEEE Wireless Communications
and Networking Conference (WCNC), IEEE Asia
Pacifc Board Outstanding Paper Award, and IEEE
SPCC Technical Committee Best Paper Award. He

regularly serves as Technical Programme Committee member in flagship
conferences, is part of the guest editor team of special issues in IEEE
Wireless Communication magzine and IEEE Journal on Selected Areas
in Communications, and is currently the review board member of IEEE
Transactions on Parallel and Distributed Systems.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3223224

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 23,2022 at 04:34:16 UTC from IEEE Xplore.  Restrictions apply. 



3912

Cheng Peng received the BS degree in Computer
Science and Technology from Beijing University of
Technology, Beijing, China, in 2019, and the MS
degree in Computer and Information Sciences from
Indiana University-Purdue University Indianapolis
(IUPUI), Indiana, USA, in 2021. His current re-
search focuses on edge computing, federated learn-
ing, and Internet of Things (IoT).

Qin Hu received her Ph.D. degree in Computer
Science from the George Washington University
in 2019. She is currently an Assistant Professor
with the Department of Computer and Information
Science, Indiana University-Purdue University In-
dianapolis (IUPUI). She has served on the Edi-
torial Board of two journals, the Guest Editor of
four journals, the TPC/Publicity Co-chair for sev-
eral workshops/conferences, and the TPC Member
for several international conferences. Her research
interests include wireless and mobile security, edge

computing, and blockchain.

Zhilin Wang received his B.S. from Nanchang Uni-
versity in 2020. He is currently pursuing his Ph.D.
degree of Computer and Information Science In
Indiana University-Purdue University Indianapolis
(IUPUI). He is a Research Assistant with IUPUI,
and he is also a reviewer of 2022 IEEE International
Conference on Communications (ICC). His research
interests include blockchain, federated learning, edge
computing, and Internet of Things (IoT).

Ryan Wen Liu (M’15) received the B.Sc. degree
(Hons.) in Information and Computing Science from
the Department of Mathematics, Wuhan University
of Technology, Wuhan, China, in 2009, and the
Ph.D. degree from The Chinese University of Hong
Kong, Hong Kong, in 2015. He is currently an
Associate Professor with the School of Navigation,
Wuhan University of Technology. He was a Visiting
Scholar with the Agency for Science, Technology
and Research, Singapore. His research interests in-
clude computer vision, data mining, and intelligent

transportation system.

Zehui Xiong is currently an Assistant Professor
in the Pillar of Information Systems Technology
and Design, Singapore University of Technology
and Design. Prior to that, he was a researcher with
Alibaba-NTU Joint Research Institute, Singapore.
He received the PhD degree in Nanyang Techno-
logical University, Singapore. He was the visiting
scholar at Princeton University and University of
Waterloo. His research interests include wireless
communications, network games and economics,
blockchain, and edge intelligence. He has published

more than 140 research papers in leading journals and flagship conferences
and many of them are ESI Highly Cited Papers. He has won over 10
Best Paper Awards in international conferences and is listed in the World’s
Top 2% Scientists identified by Stanford University. He is now serving as
the editor or guest editor for many leading journals including IEEE JSAC,
TVT, IoTJ, TCCN, TNSE, ISJ, JAS. He is the recipient of IEEE TCSC
Early Career Researcher Award for Excellence in Scalable Computing, IEEE
CSIM Technical Committee Best Journal Paper Award, IEEE SPCC Technical
Committee Best Paper Award, IEEE VTS Singapore Best Paper Award,
Chinese Government Award for Outstanding Students Abroad, and NTU
SCSE Best PhD Thesis Runner-Up Award. He is the Founding Vice Chair of
Special Interest Group on Wireless Blockchain Networks in IEEE Cognitive
Networks Technical Committee.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3222234

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on November 16,2022 at 02:52:06 UTC from IEEE Xplore.  Restrictions apply. 

Zehui Xiong is currently an Assistant Professor
at Singapore University of Technology and Design,
and also an Honorary Adjunct Senior Research Sci-
entist with Alibaba-NTU Singapore Joint Research
Institute, Singapore. He received the PhD degree
in Nanyang Technological University (NTU), Sin-
gapore. He was the visiting scholar at Princeton
University and University of Waterloo. His research
interests include wireless communications, Internet
of Things, blockchain, edge intelligence, and Meta-
verse. He has published more than 150 research

papers in leading journals and flagship conferences and many of them
are ESI Highly Cited Papers. He has won over 10 Best Paper Awards in
international conferences and is listed in the World’s Top 2% Scientists
identified by Stanford University. He is now serving as the editor or guest
editor for many leading journals including IEEE Journal on Selected Areas in
Communications, IEEE Transactions on Vehicular Technology, IEEE Internet
of Things Journal, IEEE Transactions on Cognitive Communications and
Networking, and IEEE Transactions on Network Science and Engineering. He
is the recipient of IEEE Early Career Researcher Award for Excellence in Scal-
able Computing, IEEE Technical Committee on Blockchain and Distributed
Ledger Technologies Early Career Award, IEEE Internet Technical Committee
Early Achievement Award, IEEE TCI Rising Star Award, IEEE Best Land
Transportation Paper Award, IEEE CSIM Technical Committee Best Journal
Paper Award, IEEE SPCC Technical Committee Best Paper Award, IEEE VTS
Singapore Best Paper Award, Chinese Government Award for Outstanding
Students Abroad, and NTU SCSE Best PhD Thesis Runner-Up Award. He
is now serving as the Associate Director of Future Communications R&D
Programme.

45

Wei Chong Ng received B.Eng. degree in electri-
cal and electronic engineering (Highest Distinction)
from Nanyang Technological University, Singapore
in 2020. He is currently pursuing the Ph.D. degree
with Alibaba Group and Alibaba-NTU Joint Re-
search Institute, Nanyang Technological University,
Singapore. His research interests include the Meta-
verse, stochastic integer programming, and edge
computing.

Wei Yang Bryan Lim is currently Wallenberg-
NTU Presidential Postdoctoral Fellow. He received
the PhD degree in Nanyang Technological Univer-
sity (NTU), Singapore, in 2022 under the Alibaba
PhD Talent Programme, where he won the “Most
Promising Industrial Postgraduate Programme Stu-
dent” award. His works have won Best Paper Awards
including in the IEEE Wireless Communications
and Networking Conference (WCNC) and IEEE
SPCC Technical Committee Best Paper Award. He
regularly serves as Technical Programme Committee

member in flagship conferences, is part of the guest editor team of special
issues in IEEE Wireless Communication magazine and IEEE Journal on
Selected Areas in Communications, and is currently the review board member
of IEEE Transactions on Parallel and Distributed Systems.

Jiawen Kang [M’18] received the Ph.D. degree
from the Guangdong University of Technology,
China in 2018. He was a postdoc at Nanyang Tech-
nological University, Singapore from 2018 to 2021.
He currently is a professor at Guangdong University
of Technology, China. His research interests mainly
focus on blockchain, security, and privacy protection
in wireless communications and networking.

Zehui Xiong is currently an Assistant Professor
at Singapore University of Technology and Design,
and also an Honorary Adjunct Senior Research Sci-
entist with Alibaba-NTU Singapore Joint Research
Institute, Singapore. He received the PhD degree
in Nanyang Technological University (NTU), Sin-
gapore. He was the visiting scholar at Princeton
University and University of Waterloo. His research
interests include wireless communications, Internet
of Things, blockchain, edge intelligence, and Meta-
verse. He has published more than 150 research

papers in leading journals and flagship conferences and many of them
are ESI Highly Cited Papers. He has won over 10 Best Paper Awards in
international conferences and is listed in the World’s Top 2% Scientists
identified by Stanford University. He is now serving as the editor or guest
editor for many leading journals including IEEE Journal on Selected Areas in
Communications, IEEE Transactions on Vehicular Technology, IEEE Internet
of Things Journal, IEEE Transactions on Cognitive Communications and
Networking, and IEEE Transactions on Network Science and Engineering. He
is the recipient of IEEE Early Career Researcher Award for Excellence in Scal-
able Computing, IEEE Technical Committee on Blockchain and Distributed
Ledger Technologies Early Career Award, IEEE Internet Technical Committee
Early Achievement Award, IEEE TCI Rising Star Award, IEEE Best Land
Transportation Paper Award, IEEE CSIM Technical Committee Best Journal
Paper Award, IEEE SPCC Technical Committee Best Paper Award, IEEE VTS
Singapore Best Paper Award, Chinese Government Award for Outstanding
Students Abroad, and NTU SCSE Best PhD Thesis Runner-Up Award. He
is now serving as the Associate Director of Future Communications RD
Programme.

Dusit Niyato is currently a professor in the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. He received
B.E. from King Mongkuk’s Institute of Technology
Ladkrabang (KMITL), Thailand in 1999 and Ph.D.
in Electrical and Computer Engineering from the
University of Manitoba, Canada in 2008. Dusit’s
research interests are in the areas of distributed
collaborative machine learning, Internet of Things
(IoT), edge intelligent metaverse, mobile and dis-
tributed computing, and wireless networks. Dusit

won the Best Young Researcher Award of IEEE Communications Society
(ComSoc) Asia Pacific and The 2011 IEEE Communications Society Fred
W. Ellersick Prize Paper Award and the IEEE Computer Society Middle
Career Researcher Award for Excellence in Scalable Computing in 2021 and
Distinguished Technical Achievement Recognition Award of IEEE ComSoc
Technical Committee on Green Communications and Computing 2022. Dusit
also won a number of best paper awards including IEEE Wireless Communica-
tions and Networking Conference (WCNC), IEEE International Conference on
Communications (ICC), IEEE ComSoc Communication Systems Integration
and Modelling Technical Committee and IEEE ComSoc Signal Processing and
Computing for Communications Technical Committee 2021. Currently, Dusit
is serving as Editor-in-Chief of IEEE Communications Surveys and Tutorials,
an area editor of IEEE Transactions on Vehicular Technology, editor of IEEE
Transactions on Wireless Communications, associate editor of IEEE Internet
of Things Journal, IEEE Transactions on Mobile Computing, IEEE Wireless
Communications, IEEE Network, and ACM Computing Surveys. He was a
guest editor of IEEE Journal on Selected Areas on Communications. He was a
Distinguished Lecturer of the IEEE Communications Society for 2016-2017.
He was named the 2017-2021 highly cited researcher in computer science.
He is a Fellow of IEEE and a Fellow of IET.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3221119

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on November 16,2022 at 03:01:40 UTC from IEEE Xplore.  Restrictions apply. 

Dusit Niyato received the BE degree from the
King Mongkuk’s Institute of Technology Ladkra-
bang (KMITL), Thailand, in 1999, and the PhD
degree in electrical and computer engineering from
the University of Manitoba, Canada, in 2008. He
is currently a professor with the School of Com-
puter Science and Engineering and, by courtesy,
the School of Physical & Mathematical Sciences,
Nanyang Technological University, Singapore. He
has authored or coauthored more than 380 technical
papers in the area of wireless and mobile network-

ing, and is an inventor of four U.S. and German patents. He has authored four
books including Game Theory in Wireless and Communication Networks:
Theory, Models, and Applications (Cambridge University Press). He was the
recipient of Best Young Researcher Award of the IEEE Communications
Society (ComSoc) Asia Pacific (AP) and 2011 IEEE Communications Society
Fred W. Ellersick Prize Paper Award. He is currently a senior editor of the
IEEE Wireless Communications Letter, an area editor of IEEE Transactions
on Wireless Communications (Radio Management and Multiple Access)
and IEEE Communications Surveys and Tutorials (Network and Service
Management and Green Communication), an editor of IEEE Transactions
on Communications, an associate editor for IEEE Transactions on Mobile
Computing, IEEE Transactions on Vehicular Technology, and the IEEE
Transactions on Cognitive Communications and Networking. He was a guest
editor of IEEE Journal on Selected Areas on Communications. He was a
distinguished lecturer of Communications Society for 2016–2017. He was
named the 2017, 2018, 2019 highly cited researcher in computer science.

R. Qi et al.: Martingales-Based ALOHA-Type Grant-Free Access Algorithms for Multi-Channel Networks

[13] F. Poloczek and F. Ciucu, ‘‘Service-martingales: Theory and applications
to the delay analysis of random access protocols,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Hong Kong, Apr. 2015, pp. 945–953.

[14] T. Liu, L. Sun, R. Chen, F. Shu, X. Zhou, and Z. Han, ‘‘Martingale theory-
based optimal task allocation in heterogeneous vehicular networks,’’ IEEE
Access, vol. 7, pp. 122354–122366, May 2019.

[15] Y.Hu, H. Li, Z. Chang, R. Hou, and Z. Han, ‘‘End-to-end backlog and delay
bound analysis using martingale for Internet of vehicles,’’ in Proc. IEEE
Conf. Standards Commun. Netw. (CSCN), Helsinki, Finland, Sep. 2017,
pp. 98–103.

[16] A. Goldsmith, Wireless Communications. New York, NY, USA:
Cambridge Univ. Press, 2015.

[17] G. Durisi, T. Koch, and P. Popovski, ‘‘Toward massive, ultrareliable, and
low-latency wireless communication with short packets,’’ Proc. IEEE,
vol. 104, no. 9, pp. 1711–1726, Sep. 2016.

[18] L. Zhang and Y.-C. Liang, ‘‘Average throughput analysis and optimization
in cooperative IoT networks with short packet communication,’’ IEEE
Trans. Veh. Technol., vol. 67, no. 12, pp. 11549–11562, Dec. 2018.

[19] K. Hammad, A. Moubayed, A. Shami, and S. Primak, ‘‘Analytical approx-
imation of packet delay jitter in simple queues,’’ IEEE Wireless Commun.
Lett., vol. 5, no. 6, pp. 564–567, Dec. 2016.

[20] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[21] L. Li, L. Sun, W. Kang, J. Guo, C. Han, and S. Li, ‘‘Fuzzy multilevel image
thresholding based on modified discrete grey wolf optimizer and local
information aggregation,’’ IEEE Access, vol. 4, pp. 6438–6450, Sep. 2016.

[22] Z. Zhou, R. Ratasuk, N. Mangalvedhe, and A. Ghosh, ‘‘Resource alloca-
tion for uplink grant-free ultra-reliable and low latency communications,’’
in Proc. IEEE 87th Veh. Technol. Conf. (VTC Spring), Proto, Portugal,
Jun. 2018, pp. 1–5.

RUIZHE QI was born in Jilin, China, in 1997.
She received the B.S. degree from the Depart-
ment of Communications Engineering, Xi’an Uni-
versity of Posts and Telecommunications, Xi’an,
China, in 2018. She is currently pursuing the
M.S. degree with the College of Communication
Engineering, Jilin University, Changchun, China.
Her research interests include random access
algorithms, ultrareliable and low-latency com-
munications, and delay-quality of service (QoS)
guarantees.

XUEFEN CHI received the B.Eng. degree in
applied physics from the Beijing University of
Posts and Telecommunications, Beijing, China,
in 1984, and the M.S. and Ph.D. degrees from
the Changchun Institute of Optics, Fine Mechan-
ics and Physics, Chinese Academy of Sciences,
Changchun, China, in 1990 and 2003, respectively.
She was a Visiting Scholar with the Department
of Computer Science, Loughborough University,
Loughborough, U.K., in 2007, and the School of

Electronics and Computer Science, University of Southampton, Southamp-
ton, U.K., in 2015. She is currently a Professor with the Department of
Communications Engineering, Jilin University, Changchun. Her current
research interests include machine type communications, indoor visible light
communications, random access algorithms, delay-quality of service (QoS)
guarantees, and queuing theory and its applications.

LINLIN ZHAO received the B.Eng., M.S., and
Ph.D. degrees from the Department of Communi-
cations Engineering, Jilin University, Changchun,
China, in 2009, 2012, and 2017, respectively. From
2017 to 2019, she held a postdoctoral position
at the Department of Communications Engineer-
ing, Jilin University. She joined Jilin University,
in 2019. She is currently a Postdoctoral Research
Fellowwith the State Key Laboratory of Internet of
Things for Smart City, University of Macau. Her

current research interests include throughput optimal random access algo-
rithms, resource allocation schemes, and delay and reliability analysis and
optimization, especially for reliability analysis of ultrareliable low-latency
communications. She was a recipient of the Best Ph.D. Thesis Award of
Jilin University, in 2017, and acquired the Macau Young Scholars Program,
in 2019.

WANTING YANG was born in Jilin, China,
in 1996. She received the B.S. degree from the
Department of Communications Engineering, Jilin
University, Changchun, China, in 2018. She is
currently pursuing the M.S. degree with the Col-
lege of Communication Engineering, Jilin Univer-
sity. Her research interests include wireless video
transmission, ultrareliable and low-latency com-
munications, andmodeling and performance of 5G
wireless radio networks.

37620 VOLUME 8, 2020

Xuefen Chi received the B.Eng. degree in applied
physics from the Beijing University of Posts and
Telecommunications, Beijing, China, in 1984, and
the M.S. and Ph.D. degrees from the Changchun
Institute of Optics, Fine Mechanics and Physics,
Chinese Academy of Sciences, Changchun, China,
in 1990 and 2003, respectively. She was a Visiting
Scholar with the Department of Computer Science,
Loughborough University, Loughborough, U.K., in
2007, and the School of Electronics and Computer
Science, University of Southampton, Southampton,

U.K., in 2015. She is currently a Professor with the Department of Com-
munications Engineering, Jilin University, Changchun. Her current research
interests include machine type communications, indoor visible light communi-
cations, random access algorithms, delay-QoS guarantees, and queuing theory
and its applications.

Xuemin (Sherman) Shen received the PhD degree
in electrical engineering from Rutgers university,
New Brunswick, New Jersey, in 1990. He is cur-
rently a University professor with the Department of
Electrical and Computer Engineering, University of
Waterloo, Canada. His research focuses on network
resource management, wireless network security,
Internet of Things, 5G and beyond, and vehicular ad
hoc and sensor networks. He is a registered profes-
sional engineer of Ontario, Canada, an Engineering
Institute of Canada fellow, a Canadian Academy of

Engineering fellow, a Royal Society of Canada fellow, a Chinese Academy
of Engineering Foreign fellow, and a distinguished lecturer of the IEEE
Vehicular Technology Society and Communications Society. He received the
R.A. Fessenden Award, in 2019 from IEEE, Canada, Award of Merit from
the Federation of Chinese Canadian Professionals (Ontario) presents, in 2019,
James Evans Avant Garde Award, in 2018 from the IEEE Vehicular Technol-
ogy Society, Joseph LoCicero Award, in 2015 and Education Award, in 2017
from the IEEE Communications Society, and Technical Recognition Award
from Wireless Communications Technical Committee (2019) and AHSN
Technical Committee (2013). He has also received the Excellent Graduate
Supervision Award, in 2006 from the University of Waterloo, Canada and the
Premier’s Research Excellence Award (PREA), in 2003 from the Province
of Ontario, Canada. He served as the technical program committee chair/co-
chair for the IEEE Globecom’16, the IEEE Infocom’14, IEEE VTC’10 Fall,
IEEE Globecom’07, symposia chair for IEEE ICC’10, and chair for the IEEE
Communications Society Technical Committee on Wireless Communications.
He is the elected IEEE Communications Society vice president for Technical
& Educational Activities, vice president for Publications, Member-at-Large
on the Board of Governors, chair of the Distinguished Lecturer Selection
Committee.

Chunyan Miao is the Director of the Joint NTU-
UBC Research Centre of Excellence in Active Liv-
ing for the Elderly (LILY), Nanyang Technological
University (NTU), Singapore. She is the Chair of
the School of Computer Science and Engineering,
NTU. She is the Editor-in-Chief of the International
Journal of Information Technology published by the
Singapore Computer Society.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3223224

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Sungkyunkwan University. Downloaded on November 23,2022 at 04:34:16 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Motivation
	Comparisons and key contributions
	Scope of the survey

	Fundamentals of SemCom
	SemCom-related theory
	Semantic information theory
	Strongly semantic information theory
	Semantic communication theory
	Goal-oriented communication theory

	SemCom system design
	Semantic-oriented communications
	Goal-oriented communication
	Semantic-aware communication


	Semantic extraction technologies and challenges
	DL-based SE
	SE for visual data 
	SE for text data
	SE for audio data
	SE for multimodel data

	RL-based SE
	KB-assisted SE
	Semantic-native SE
	Some specific SE
	Lessons learned summary
	Lessons learned for DL-based SE
	Lessons learned for RL-based SE
	Lessons learned for KB-assisted SE
	Lessons learned for semantic-native SE
	Lessons learned for specific SE


	Semantic Information Transmission and Challenges
	Wireless environment
	Varying fading channel
	Uncertain SNR
	Bit errors

	Limited Network Resource
	Bandwidth resource
	Energy resource

	Heterogeneous Network Devices
	Device capacities
	Connections among IoT devices
	Coding and decoding scheme

	Lessons learned summary
	Lessons learned for wireless environment
	Lessons learned for limited network resources
	Lessons learned for heterogeneous network devices


	Semantic Performance Measurement and Challenges
	Error-based semantic metrics
	Semantic metrics for text data
	Semantic metrics for audio data
	Semantic metrics for visual data

	AoI-based semantic metrics
	VoI-based semantic metrics
	Combined semantic metrics
	Lessons learned summary
	Lessons learned for error-based semantic metrics
	Lessons learned for combined semantic metrics


	SemCom for future 6G Internet
	Potential applications for SemCom in 6G
	Intelligent transport system
	Distributed learning based applications
	Unmanned aerial vehicles
	Extended reality
	 Holographic telepresence (HT)
	Personalized body area networks
	Collaborative robots
	Hyper-intelligent IoT

	SemCom-empowered 6G architecture
	Semantic intelligence plane
	Semantic application-intent layer
	Semantic network-protocol layer
	Semantic physical-bearing layer


	Future directions
	Interpretability and explainability of SE
	Tradeoff between SE accuracy and communication overhead
	Combination of SemCom and semantic caching
	Reasoning in implicit SemCom
	Artificial intelligence in SemCom channel management
	Tradeoff between SemCom performance and security

	Conclusion
	References
	Biographies
	Wanting Yang
	Hongyang Du
	Zi Qin Liew
	Wei Yang Bryan Lim
	Zehui Xiong
	Dusit Niyato
	Xuefen Chi
	Xuemin (Sherman) Shen
	Chunyan Miao


